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Frequency-domain representation of discrete signals and systems

— Response of an LTI system to a complex exponential
— Fourier representation of a discrete-time sequence

A Review of the discrete-time Fourier Transform (DTFT)

— Symmetry properties of the Fourier Transform
— Theorems regarding the Fourier Transform
— Table of Fourier pairs

The DTFT of the auto-correlation and of the cross-correlation

— the DTFT of the auto-correlation
— the DTFT of the cross-correlation
— examples
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A Frequency-domain representation of discrete signals & systems

\/ \/

* Question: what is the output of an LTI system when the input is a
complex exponential ?  y,]= ¢/

—0<nN<+0

2

+o0

y[nl= D x{nlhn—k]= Zh kx{n—k]= Zh[k]e”(” 0 Zh[’f] -iakgion _ f7(gie Yoion

k=—w0 k=—x k=—0

— Answer: it's the complex exponential possibly modified in magnitude and
phase according to the frequency response of the LTI system.

— Note: this result reveals that el*" is an eigen function of the LTI system and
that H(el®) is the eigen value of the system at the angular frequency o radians.

« Definition of the frequency response of an LTI system

(obtained by computing the Fourier transform of its impulse response)

H(eja’ )i ih[n]e—jwn _ ‘H(eja) XejLH(ejm)

n=-—ao0

— |H(e®)] — absolute value of the frequency response of the system

— ZH(el®) — phase of the frequency response of the system ,
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Frequency-domain representation of discrete signals & systems

— Example: what is the response of an LTI system, with h[n] real, to the input

— Answer: x[n] may be expressed in a convenient way: x[n]= 5
and then:

X[n]=Acos(mgn+d) ?

A [e,f(mon+¢> N e—j(mon+¢)]

y[n]= g[H(ej“’O )ej(“")”*m + H(e’”0 )e”””’”m ] = A‘H(e””” ] cos[a)on +¢+ LH(ej“’0 )]

— Important property of H(ei®)

given the periodicity of the discrete complex exponential, e, the frequency
response H(e®) is periodic with period 2, so that in order to characterize it
completely, it is sufficient to represent the magnitude and phase considering a
frequency span of 2r radians, e.g., between -t and += or O and 2x.

Example: what is the frequency response of a moving-average filter of length 5 ?

1/5

] -

3-2-1 01 2 3 4 n

1/5 0<n<4
h[n]={

0 outros
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Frequency-domain representation of discrete signals & systems

— Answer: using the definition of the time-discrete Fourier transform:

H(e™)

»

—jS('J SlIl — Q@
: :le—j.’l(—) 2 :‘H(ej(a leng(er)
-jo 5 @
Sm -—
2

- -4n/S -27/5 21/5 4n/5 +m
ZH(e®) 1
1 n
---------- 4m/5
------------------- 3n/5
i \ ----------- AN
\-471:/5 \ __________ % +7 ]
SBa/S b\
4n/5 f----------
T+ -7

© AJF

NOTE 1: the magnitude function is even.
NOTE 2: the phase function is odd.

Question 1: why is that
ZH(el®) # -2 ?
(note that -1=¢4%)

Question 2: why is that in this
representation of ZH(el®) we
say that the phase 1s wrapped ?

(what 1s the fundamental period
in the representation of phase ?)
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Fourier representation of a discrete sequence

)= [k do i - x(e)=|x(e Jer " = 3 e

—T H=—u0

a

the Fourier transform of a discrete-time signal x[n] is periodic with period
21 and exists if x[n] is absolutely summable

the inverse Fourier transform allows to synthesize x[n] using a period of
its representation in the frequency domain

— Example:

(ef‘“’) Za e’ = (ae‘f"y =

AI ae’?

A

‘x[n] =a"uln|

if Jagi®| <1 .. Ja|<1
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Fourier representation of a discrete sequence
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« Example: what is the impulse response of an ideal low-pass filter ?
Hpg(e'®) .

»

e

F 1 7 o) s 1 ¢ sin ne
o) < hoolnl=— | H,,\&’ " "do=— |e’"dw = -
Hyle) < b= [Halerdo = | s
—o<n<+
(DC/TE oo <n 00
o
ole
o o
hPB [n] NOTE: hpg[n] consists of an IIR non-

causal system that is not realizable !

NOTE-+: the response hpg[n] is not absolutely summable, but its square is summable, which

highlights the fact that a filter resulting fom hpg[n] by limiting its length, is the best

© AJF approximation, in the mean-square sense, to HPB(ej(”) (i.e. to the ideal filter). 6
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A Fourier representation of a discrete sequence
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— special cases

these are special cases because they are neither absolutely summable nor
square-summable, they arise from the theory of generalized functions but they
are very important in the analysis of signals and discrete-time systems:

e train of impulses

unitary Dirac
impulses N ~ impulses

S 8[n—1] S 218(e+k27)
N
1 >. 2m

SERNRNRNES AL -

32 -1 01 2 3 4 n'/ \-4n—2n02n4n6n8n o)
* unitary complex exponential

F

a
v

+c0

eja)on ) R 2277:5(60—600 +k271)
'~ k=—w
* unitary step F | o
uln] < Slrmpe > 78(w+k2r)

k=—w

© AJF
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A Symmetry properties of the time-discrete Fourier transform

\/

— given x[n] , we may express x[n]=x,[n]+Xx [n] where:

=l Tnl) = T

« X.[n] is the conjugate symmetric sequence of x[n]; in case x[n] is real,
Xg[N] is also known as the even component of x[n] since X [N]= X[-N]

x,[n] = %(x[n] —x[-n])= —x[-n]

* X,[n] is the conjugate anti-symmetric sequence of x[n]; in case x[n] is real,
X,[N] is also known as the odd component of x[n] since X [N]= -X,[-N]

— similarly, X(el®) = X (el*) + X (el*)
X (o) e o el )
« X, (e®) is the conjugate symmetric function of X(el®), X (el®) is also said
the even component of X(el®) when X(el®) is real-valued

X, ()= lxle)- (e = -xce )

o o

« X, (e®) is the conjugate anti-symmetric function of X(el®), X (el*) is also
said the odd component of X(el*) when X(el®) is real-valued 8
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Main symmetry properties of the time-discrete Fourier transform

xnp  __F

conjugate symmetric part of X(e®)

0 conjugate anti-symmetric part of X(e/®)

R X(ej“’ }‘

j3ix(e” )

(real-valued)

x,[n]

X(e)=Xq(e) HjX5(e))= X"(e7)

i.e. the transform is conjugate symmetric :
X (em ): Xy (e_jm)
Xyle”)=-X (e )

‘X(ej”] = X(e‘j“’l

LX(e’”): —LX(e‘f”)‘ 9




A Review of the main Fourier transform theorems

Fundamentals of Signal Processing, week 2

vV (relate operations involving discrete sequences and the corresponding operations in the Fourier domain)
x[n], y[n] < > X(e), Y(e)
linearity ax[n]+ by[n] ax(e’ )+ by(e”)
o x[n—n,] e X (ej“’) S

shift in n d n, inteiro

shift in o e x[n] xle' |

‘time’ reversal x[-n] X(e7)

] o “dxle’ why is there no
differentiation in ® nx[n] J ( ) e e
dw differentiation” in n ?

convolution xX[n]* y[n] x(e)-v(e)
§ 1 f 6 (w0-8)
g" product x{n]- yln] E_J;X (ej )Y(ej )d@ (periodic convolution)
g +0 1 T
5 ) ? | |
£ Parseval theorem  2.x(n]-y[n] = X (e (e’ Jdew
a =00 T
é: -7
J 1 % 2
5 Parseval theorem = X (ef“] dw
1 . T —'71'
5 (particular case) —
& energy spectral density 10
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‘ Tabela de pares de Fourier

example: a"u[n], ’a’<]k x[n] < > Pi(@”ﬂ

aml | 1

oln—n,] e~/

l—ae

f:g[n_g] 227[5(&)+k2ﬂ')
P— jra—

ejwo” k_z 20 (w —w, + k2r)

1 —
. un] | —+ Zn&(a) +k27)
< k=—»
8 2
> (n+Da"ulnl, |a|<1 | 1/1-ae”®
g
2 : @
g 1, 0<n<m | sm(M+D—-
S > 2 .7
A 0, outros . @
5 2
.{/3 +o . .
E cos(@,n +¢) 7 Z[e”’é‘(a)—a)o +k2r)+e 5 (o +w, +k27r)]
=
5
=
=]
[

FEUP-DEEC, September 18-22, 2023

k=—»
Sin n@
: {1, 0| <o,
nr .
, sin @, (n+1) 0, o, <|o|<m
r _ uln], |r|<1 .
© AJF sin @, 1/(1—2rcosa)Pe e’ “’)
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Question: what is a practical way to find the inverse Fourier transform ?

1

- Example: X(¢/”)=

(I—ae)1-be ')’

if M<N and poles are first-order, then:

with : 4, = (1-d,e ") X (e’*)

Jjo _
e 7dk

causal

F

<

<

>

x[n]=?

X)) =

M

- ce’”)

=

N

[a-d.e’”)

=1

Sk

and thus:

1 a/(a b) b/(b-a)

(1—ae’*)1-be ') 1—ae™®

l b —j(o

which leads to: x(n) =

a"u[n]+ bib”u[n]

ﬂ

ﬂ

Not to forget !

© AJF



The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the auto-correlation
the auto-correlation is defined as (in this discussion, we admit energy signals)

r[£] = x[£] * x*[~£] = z+°° x[k] x*[k — 2]

k=—o0

considering the DTFT properties

x[£] N X(e/®)

F .
x'[f] ——  X*(e)
F .
x[—f] —— X(e‘f“))
F .
X[~ ——  X"(e/*)

rlf] = x[f] s x'[—6] —— Ry(e/®) = X(eJ®) - X*(e/®) = [X(e/®)|]

Where R, (e/®) = |x(e/®)|" is called the spectral density of energy
© AJF 13
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The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the auto-correlation (cont.)

— the Wiener-Khinchine Theorem: the auto-correlation and the spectral
density of energy form a Fourier pair

nlf] —— Ry(e®) = [x(ef®)[’

thus,

VIA
—_ jwY pjwt
. R(e ) e!“"dw

—T1T

T[]

and, in particular, the energy of the signal can be found using

T

E =r[0] = E KPR = o= [ R(e)dw = o f ()] dw
x k=—o0 27T 2T[
-7 -7

which reflects the Parseval Theorem
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The DTFT of the auto-correlation and of the cross-correlation
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« the DTFT of the cross-correlation
the cross-correlation is defined as (we admit energy signals)

+ 0o

oyl = x[€] 5y (€] = " xlk]y’[k - 4]

k=—o0

considering the DTFT properties

F .

x[f] X(ef“))
F .

yl¢] — G

vl —  Y(e7®)
F .
yI=t] —— Y(e?)

y*[—£] AN Y*(e/®)

then

Ty €] = x[€] * y*[—£] P Ryy(e7?) = X(e/®) - Y*(e/?)
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The DTFT of the auto-correlation and of the cross-correlation

\/ \/

e examples

let us admit two discrete-time signals, x[n] and y[n]

y[n] 3

x[n] 3
Mf : H'
o 1 2 0 2

n 1

v

it can be easily concluded that

F . . )
6['6] + 25['€ - 1] + 5[‘£ — 2] —> X(e]w) =3 + Ze_](‘) + e_]zw

x[f] =3
F . ) .
5[€] +26[£ — 1] +36[£ — 2] —— Y(e/®) =1+ 2e7J® 4 3¢7/2®

y[£]

R.(e/®) = 3e/2® +8e/% + 14 + 8e /% + 3e7/2¢ = R ,(e/¥), (why?)

Ry, (67©) = 9€729 4 1279 4 10 + 4e 7@ 4 ¢7/20
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