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Finite Impulse Response Filter

x(n)=[x(n),x(n-1),...,x(n =N +1)]"
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w(n)=[w,(n),w (n),.. ’WN—I(n)]T
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Adaptive FIR Filter
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Adaptive FIR Filter
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Defining a Cost Function
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Defining a Cost Function
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e(n)=d(n)~-y(n)
=d(n)-x (n)w(n)

e’(n)=d*(n)-2d(n)x (m)w(n)+w' (n)x(n)x (n)w(n)

§(n) = E[e’(n)]

= E[d*(n)=2d(n)x’ (m)w(n)+w (m)x(n)x' (n)w(n)]
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Defining a Cost Function

§(n) = E[e”(n)]
= E[d*(n)=2d(n)x (mw(n)+w' (n)x(n)x (n)w(n)]

E(n)=E[d*(m)]+w (n)E[x(n)x (n)]lw(n)-2E[d(n)x (n)]w(n)
= E[d*(n)l+w (n)Rw(n)-2p" w(n)

where p =E[d(n)x(n)]
R =E[x(n)x (n)]

From now on, consider mean squared error to be a (quadratic) function of w.

E(w)=E[d*(n)]+w' (n)Rw(n)—=2p" w(n)
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Minimum of the Cost Function

Differentiate mean squared error with respect to w.

0¢(w) _ 0 (E[dz(n)] +mTRm—2£TK)

ow ow

Derivative will equal zero at minimum corresponding to optimum value of w.

2Rm0pt —2£=O

Hence, the optimum value of w is a function of constant statistical properties of x and d.

w,, =R'p
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Visualizing the Cost Function

g(w)

E(w) = E[d*(n)]+w (n)Rw(n)—2p" w(n)
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Steepest Descent

S(w)
\ og(w) 0 (E[dz(n)]erTRm—Zng)
0&(w) ow -
ow w=w
0 :2Rm—2£
o&(w)
Smin <_>IB gvr) W=w
Wopt =~ W, Wo w
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The LMS Algorithm

* The steepest descent method requires an estimate of the gradient of the cost function
at each step.

* There are various ways of estimating that gradient.

* A general method might be to alter the value of w slightly, and over a suitable period of
time in each case, assess the value of the cost function.
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The LMS Algorithm

* However, we will look at a method that requires only instantaneous measurements in
order to estimate the gradient of the cost function.
* The Least Mean Squares (LMS) algorithm uses instantaneous error squared e,? as an

estimate of mean squared error E[e,?].

arm
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The LMS Algorithm

This yields the following gradient estimate

0&(n)

de’(n) |
ow,(n) ow,(n)
) a&(n) de’(n)
V) =\ aw (n) |T| 0w (n)
0E(n) de’(n)

| Oowy_ (n) | LOwy_(n) ]

Using vector notation

G (ny = 260 _ de’(n)
- dw(n) ow(n)
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The LMS Algorithm

Differentiating the expression for instantaneous squared error with respect to w
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The LMS Algorithm

The steepest descent algorithm using this gradient estimate is:

Wi =w, - PV,

=w,+2f0e. x,
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The LMS Algorithm

* Gradient estimate is imperfect.

* Adaptive process will be noisy.

* Conservative choice of 8 value advisable
* Algorithm is simple.

* Not computationally intensive

* |deal for real-time implementation

16 © 2019 Arm Limited

arm



The LMS Algorithm

* Variants of the basic LMS algorithm

W, = W, +20sgn (ek )lk
Wi = Wy, +20e, sgn (lk)

Wi = w; +28sgn (e, )sgn (1)
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Adaptive Filters - Key Points

* We've looked at adaptive filters that may be represented in the form
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Adaptive Filters - Key Points

* The filter adjusts its characteristics to minimize the average power in e.

 Depending on how desired output d is derived, this behavior can be put to a number of
different uses.

* For given statistical properties of x and d, average power in e is a function of w.
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Adaptive Filters - Key Points
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Adaptation is the search for filter parameter settings (weights, coefficients) that
minimize the variance of e.

The filter adjusts its characteristics to minimize the average power in e.

Depending on how desired output d is derived, this behavior can be put to a number of
different uses.

For given statistical properties of x and d, average power in e is a function of w.
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Adaptive Filters - Key Points
* Adaptation is the search for filter parameter settings w that minimize average power in
e.

e |f the filter is a linear FIR, average power in € is a quadratic function of w.
* Steepest descent is therefore feasible.

* But requires knowledge of the gradient of the cost function (average power)
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Adaptive Filters - Key Points

* The LMS algorithm provides an instantaneous estimate of gradient for use in the
steepest descent algorithm.

* Enabling us to search for w that minimizes C(w) on-line, with minimal computational
burden

* LMS algorithm and adaptive FIR filter are the basis of many other learning systems.
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