2023/24 Apresentação UC

Apresentação

Objetivos de Aprendizagem

(conhecimentos, aptidões e competências a desenvolver pelos estudantes)

- 1. Reconhecer aspetos da computação no mundo à sua volta;
- Aplicar ferramentas e técnicas da computação para compreender e raciocinar sobre sistemas e processos tanto naturais como artificiais;
- 3. Abstração, em diversas modalidades: modelação, decomposição, generalização e classificação;
- 4. Compreender e explicar programas;
- 5. Conceber e escrever programas;
- 6. Encontrar e corrigir erros no código;
- 7. Refletir aprofundadamente sobre o programa, incluindo avaliar a sua correção e adequação ao propósito;
- 8. Compreender a eficiência do programa;
- 9. Descrever o sistema a outras pessoas;
- 10. Discutir aspetos como a inteligência e a consciência naturais e artificiais, a criatividade e a propriedade intelectual e as implicações morais e éticas da utilização de computadores.

Bibliografia

- Peter J. Denning, Matti Tedre. Computational Thinking, MIT Press, 2019.
- John Guttag. Introduction to Computation and Programming Using Python: With Application to Understanding Data Second Edition. MIT Press, 2016. ISBN: 9780262529624

Metodologia de Ensino

- Baseadas em apresentação e discussão de problemas nas aulas teóricas e resolução de exercícios nas aulas práticas.
- Serão utilizadas ferramentas desde as simulações em papel e lapis, à programação de robots infantis até à escrita e correção de programas com um IDE para Python.

Tipo de avaliação

- Avaliação distribuída com exame final.
 - Um teste (T1).
 - Nota mínima T1: 6 valores.
 - Nota mínima exame: 6 valores.

 Haverá um exame de recurso (EM) destinado aos alunos que desejem melhorar a sua classificação final e para aqueles que não obtiveram os mínimos na avaliação normal.

Classificação final

Nota Final =
$$(T1+Exame)/2$$
;

Obtenção de frequência

- São condições para a obtenção de frequência:
 - Cumprimento do limite de faltas legalmente estabelecido.
 - Obtenção de um mínimo de 10 (dez) valores na classificação final.

- Pensamento computacional ou pensamento algorítmico significa "PENSAMENTO LÓGICO".
- Tais denominações, remetem, obviamente, ao contexto computacional, pois derivam dos conceitos básicos da ciência da computação para solucionar problemas.
- Mas, pensamento computacional ou pensamento algorítmico é apenas um método organizacional para se chegar a uma resposta. É uma forma de pensar para a resolução de problemas.

Quais as vantagens do "Pensamento Computacional"?

Planeamento

Capacidade de pesquisa

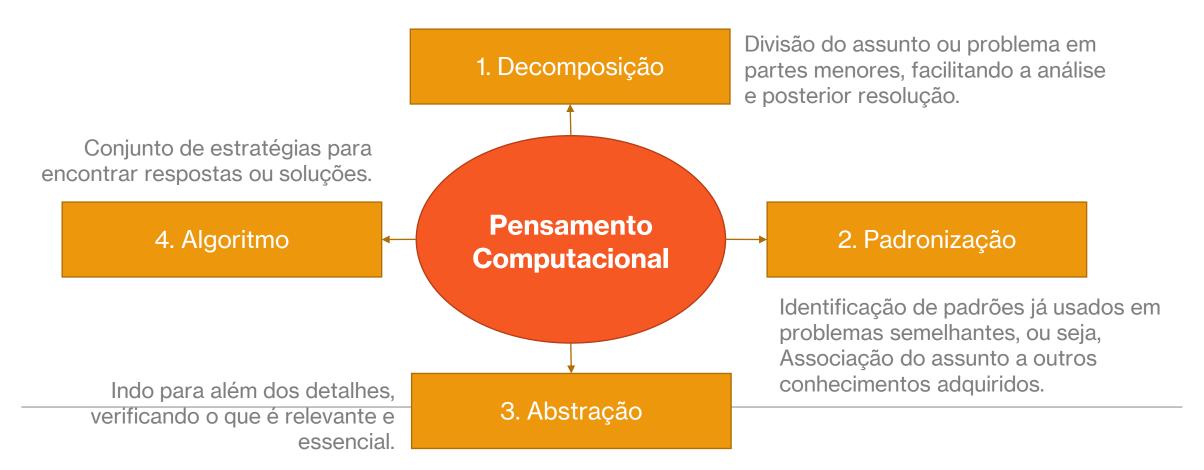
Organização

Visão Crítica

Autonomia

Raciocínio Lógico Trabalho em equipa

Participação


Criatividade

Inovação

As Fases do Pensamento Computacional

Perante uma situação/problema, pode agir-se seguindo 4 fases:

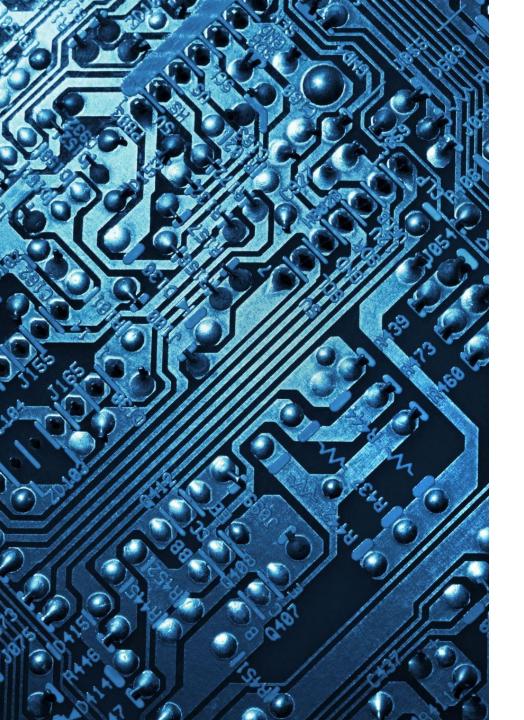
Pensamento Computacional na Prática

Lavar a Roupa na Máquina

- 1. Dividir as roupas por cores e tipos de tecido (Decomposição);
- 2. Lembrar que, noutras vezes, já manchou roupas ou teve roupas com fiapos colados (Padronização);
- 3. Manter o foco no essencial, ou seja, reconhecer os fatores que geram o problema: roupas escuras mancham roupas brancas e as escuras ficam com fiapos das brancas / toalhas soltam fiapos em todas as outras peças (Abstração);
- 4. Estabelecer a ordem para execução da tarefa: em quantas vezes fará o processo de lavagem e como serão as fases para cada grupo separado e, assim, obter o resultado acertado de as roupas ficarem limpas e conservadas (Algoritmo).

Problema?

(latim *problema*, -atis, do grego *próblema*, -atos)


- nome masculino
- 1. Questão matemática proposta para se lhe achar a solução.
- 2. Questão, dúvida.
- 3. O que é difícil de explicar.

"problema", in Dicionário Priberam da Língua Portuguesa [em linha], 2008-2021, https://dicionario.priberam.org/problema [consultado em 25-09-2022].

Lógica?

- A lógica é o ramo da Filosofia e da Matemática que estuda os métodos e princípios que permitem fazer distinção entre raciocínios válidos e não válidos, determinando o processo que leva ao conhecimento verdadeiro.
- O uso da lógica é essencial na solução de problemas. Permite alcançar objetivos com eficiência e eficácia.
- Ninguém ensina outra pessoa a pensar, mas a desenvolver e aperfeiçoar esta técnica, com persistência e consistência.

Algoritmo

- Ao utilizarmos a lógica para listar passos ordenados que resultam na solução de um determinado problema estamos a construir um algoritmo.
- Ao contrário do que normalmente se imagina, o termo algoritmo não foi originado na computação e muito menos pode ser utilizado apenas no contexto computacional.

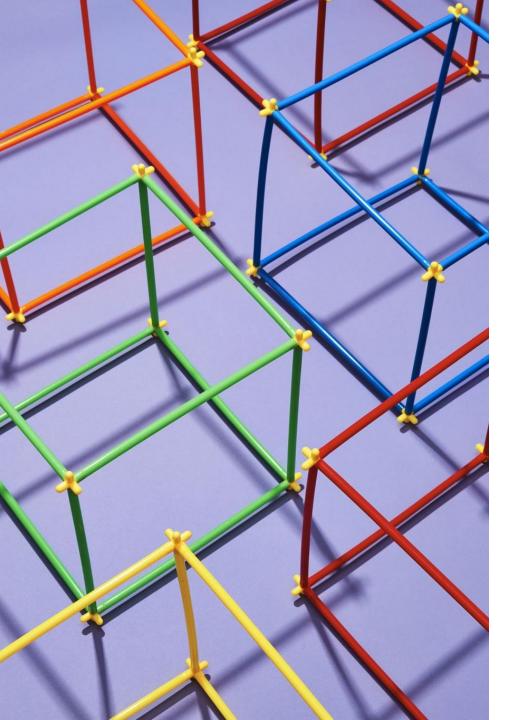
Algoritmo

- Podemos definir um algoritmo como:
 - uma sequência de passos que visa atingir um
 - objetivo bem definido;
 - uma sequência de passos bem definida que
 - deve ser seguida para a realização de uma tarefa;
 - ou solução de um problema.

Como ferver água?

Os passos deste processo de ferver água podem ser sumariados da seguinte forma:

- Encher uma panela com a quantidade desejada de água;
- Aumentar a fonte de calor para o máximo;
- Colocar a panela num dos discos do fogão;
- Colocar a tampa na panela;
- Manter a atenção na panela até se identificar grandes bolhas exemplo de serem formadas na água.



Componentes de um algoritmo:

- 1. Início: especificar o ponto inicial do algoritmo;
- 2. Entrada: definir os parâmetros de entrada do algoritmo;
- 3. Tarefa (ou cálculo): Especificar os cálculos necessários;
- 4. Saída: especificar os parâmetros de saída do algoritmo (resultados);
- 5. Fim: especificar o momento final do algoritmo.

Definir um algoritmo para calcular e apresentar o salário bruto mensal de um trabalhador que trabalha à hora.

Formas de Representação de um Algoritmo

- Descrição Narrativa;
- Pseudocódigo;
- Fluxogramas.

2. (A) (B) (C) (D) (E) 28. (A) (B) (C) (D) (E) 3. (A) (B) (C) (D) (E) 29. (A) (B) (C) (D) (E) 4. (A) (B) (C) (D) (E) 30. (A) (B) (C) (D) (E) 5. ABCDE 31. (A) (B) (C) (D) (E) 6. ABCDE 32. (A) (B) (C) (D) (E) 7. A B C D E 33. (A) (B) (C) (D) (E) 8. (A) (B) (C) (D) (E) 34. (A) (B) (C) (D) (E) 9. A B C D E 35. (A) (B) (C) (D) (E) 10. (A) (B) (C) (D) (E) 36. A B C D E 11. (A) (B) (C) (D) (E) 37. (A) (B) (C) (D) (E) 12. A B C D E 38. (A) (B) (C) (D) (E) 13. A B C D E 39. (A) (B) (C) (D) (E) 14. (A) (B) (C) (D) (E) 40. (A) (B) (C) (D) (E) 15. A B C D E 41. A B C D E 16. (A) (B) (C) (D) (E) 42. (A) (B) (C) (D) (E 17. ABCDE 43. (A) (B) (C) (D) (E 18. (A) (B) (C) (D) (E) 44. A B C D (19. (A) (B) (C) (D) (E) 45. (A) (B) (C) (D) (20. (A) (B) (C) (D) (E) 46. (A) (B) (C) (D) 21. (A) (B) (C) (D) (E) 47. (A) (B) (C) (D) 22. (A) (B) (C) (D) (E) 48. A B C D 23. (A) (B) (C) (D) (E) 49. (A) (B) (C) (D) 21 ABCDE

Pseudocódigo

 Pseudocódigo é uma forma genérica de escrever um algoritmo, utilizando uma linguagem simples (nativa a quem o escreve, de forma a ser entendida por qualquer pessoa) sem necessidade de conhecer a sintaxe de nenhuma linguagem de programação.

Estrutura Básica

Algoritmo < nome do algoritmo >

Variáveis

<lista de variáveis>

Início

<blook de comandos>

Fim

As palavras a negrito são palavras reservadas, palavras que indicam secções do pseudocódigo ou ações a serem executadas (instruções).

Problema do maior número

Linguagem natural?

Problema do maior número

```
Nome do algoritmo
Algoritmo Maior
                                                     Declaração de variáveis
Var
       num1, num2, maior: inteiro
Início
                                                  Comando de entrada de dados
       Leia(num1, num2);
       se (num1>num2) então
               maior <-num1;</pre>
                                                       Comando de atribuição
       senão
               maior <- num2;</pre>
                                                         Comando de saída de dados
       fimse;
       Escreva (maior);
Fim
```


Calcular o salário de uma Pessoa após um aumento de 10%.

Calcular o salário de uma Pessoa após um aumento de 10%.

- . Dados de entrada? Neste caso, o valor do salário.
- .Saída? Neste caso, o novo salário.
- .O processamento necessário para transformar a entrada na saída? Neste caso, o cálculo do reajuste (10% do salário) e, em seguida, o acréscimo desse valor ao salário.
 - . Reajuste = salário * 0.10;
 - . Novo salário = salário + Reajuste

Calcular o salário de uma Pessoa após um aumento de 10%.