
Liquid-vapor equilibrium (some considerations) 

 

 

1. The Clausius-Clapeyron equation 

 

The so-called Clausius-Clapeyron equation relates the equilibrium vapor pressure of a pure 

substance, p, with temperature, T. For a system composed of a liquid and its vapor at equilibrium 

𝐺m(l) = 𝐺m(g). Since 𝑑𝐺m = −𝑆m ⋅ 𝑑𝑇 + 𝑉𝑚 ⋅ 𝑑𝑝, equating 𝑑𝐺m(l) = 𝑑𝐺m(g) yields the 

Clausius-Clapeyron equation, with no approximations, for a vaporization process in material 

equilibrium (no mass exchange between system and surroundings): 
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Now, let us make some simplifying approximations. Since Vm(g) >> Vm(l) we can assume 

that Δl
g
𝑉𝑚 ≅ 𝑉𝑚(𝑔), and considering ideal gas behavior we can use the relation Vm(g) = R∙T / p. 

Simple algebraic rearrangements yield the approximate form of the Clausius-Clapeyron equation: 
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If considering Δl
g
𝐻m independent of T, the indefinite integral of equation (2) gives: 
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where C is an integration constant. For relatively small temperature intervals (≈ 20 K) and 

temperatures not very near the critical temperature, Tc, equation (3) is accurate enough and the 

graphical representation of )/1(ln Tfp   should yield a straight line with slope Δl
g
𝐻m/𝑅 and 

intercept C. 

 



2. Standard molar quantities of vaporization; temperature and pressure corrections 

 

 Logarithms are dimensionless quantities and thermodynamics must be consistent with that. 

In fact, the correct representation of the logarithmic term in equation (3) is ln (p/p*), where p* is 

a reference pressure, which can be any chosen pressure (e.g. p* = 1 Pa, p* = 760 mmHg, etc.). If 

p* = 105 Pa then p* = p0, the standard state pressure. Remember that the units of pressure of p and 

p* inside the logarithm must be same. Equation (3) then reads: 
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Multiplying both sides of the equation by −R∙T and knowing that Δl
g
𝐺m = −𝑅 ⋅ 𝑇 ⋅ ln( 𝑝/𝑝 ∗) =

Δl
g
𝐻m − 𝑇 ⋅ Δl

g
𝑆m, gives: 
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The slope of the linear representation of equation (4) gives Δl
g
𝐻m(< 𝑇 >,< 𝑝 >)/𝑅, from 

where Δl
g
𝐻m(< 𝑇 >,< 𝑝 >) can be easily calculated. The value of ∆H thus derived refers to the 

average temperature, <T>, and average pressure, <p> of the experimental interval used in the 

)/1(ln Tfp   representation. Δl
g
𝑆m(< 𝑇 >,< 𝑝 >) can be derived using equation (6): 
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since for all the (T, p) pairs of points along the liquid-gas curve in the phase diagram liquid and 

gas are in thermodynamic equilibrium, and hence Δl
g
𝐺m = 0. Note that while the ∆S calculated by 

equation (6) refers to <p>, that calculated by equation (5) refers to p*. Both ways are valid for 

calculating ∆S, however, always keep in mind to which pressure they refer. 

  

 



Normally, it is of interest to refer the molar quantities of vaporization to p = p0 =105 Pa and 

T = 298.15 K, or another set of (p, T) conditions. In this way, some corrections must be applied in 

order to derive the standard molar enthalpies, Δl
g
𝐻m
0 (298.15K) and entropies, Δl

g
𝑆m
0 (298.15K), 

of vaporization, at T = 298.15 K, from Δl
g
𝐻m(< 𝑇 >,< 𝑝 >) and Δl

g
𝑆m(< 𝑇 >,< 𝑝 >), 

respectively. The value of Δl
g
𝐻m
0 (298.15K) is obtained according to the following thermodynamic 

cycle, considering 1 mol of compound that vaporizes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

where ΔH(1) and ΔH(2) correspond to the change in enthalpy due to a pressure and a temperature 

change. For most compounds, the changes in H due to a pressure change are negligible when 

compared to the value of Δl
g
𝐻m
0 (298.15K). Moreover, ΔH(1) and ΔH(2) nearly cancel each other 

in the cycle shown in the figure and so it is usual to neglect the contribution of pressure for the 

enthalpy correction. 

The change in H with T at constant p can be calculated remembering that at constant 

pressure 𝑑𝐻 = 𝜕𝑞𝑝 = 𝐶𝑝 ⋅ 𝑑𝑇, where Cp is the heat capacity at constant pressure. After 

rearrangement, considering that the process takes place at p = p0 = 105 Pa, this yields for ΔH(1) 

and ΔH(2), on a molar basis: 
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For most substances, the values of 𝐶𝑝,m
0 (l) and of 𝐶𝑝,m

0 (g) are in the 102 order of magnitude and 

these corrections are often significant. Δl
g
𝐻m
0 (298.15K) is then calculated as follows: 
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where the relation Δl
g
𝐶𝑝,m
0 = 𝐶𝑝,m

0 (g) − 𝐶𝑝,m
0 (l) was used. In many situations the function that 

describes the dependence of 𝐶𝑝,m
0 (l) and of 𝐶𝑝,m

0 (g) with T is not known, and the value of Δl
g
𝐶𝑝,m
0  

must be estimated. A normal way to do this is to consider Δl
g
𝐶𝑝,m
0   independent of T in equation 

(9), put it outside the integral and assume that a mean and constant value of Δl
g
𝐶𝑝,m
0 (�̄�) holds for 

the considered temperature interval, where �̄� = (< 𝑇 > +298.15)/2. Since 𝐶𝑝,m
0 (l) is generally 

higher than 𝐶𝑝,m
0 (g), Δl

g
𝐶𝑝,m
0  < 0 and ∆l

g
𝐻m
0  will decrease with increasing temperature. 

 For the derivation of Δl
g
𝑆m
0 (298.15K) a thermodynamic cycle similar to the one presented 

before for ∆H is used, considering 1 mol of compound that vaporizes: 
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where ΔS(1) and ΔS(2) correspond to the change in entropy due to a pressure and a temperature 

change, and can be equated by using the equation: 
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Integrating, this yields for ΔS(1) and ΔS(2), on a molar basis: 
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Since Vm for liquids has only a small variation with p the second term of equation (11) can be 

neglected. Assuming ideal gas behavior, and that the final pressure is p = p0 = 105 Pa, 

Δl
g
𝑆m
0 (298.15𝐾) can then be calculated by the equation: 
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For the term containing Δl
g
𝐶𝑝,m
0  the same treatment described for Δl

g
𝐻m
0 (298.15K) can be 

employed for derivation of Δl
g
𝑆m
0 (298.15K). 

 The standard molar Gibbs energy of vaporization, at T = 298.15 K, Δl
g
𝐺m
0 (298.15K), can 

then be calculated by equation (14) and the vapor pressure at T = 298.15 K by equation (15): 
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where p0 = 105 Pa, and the relation Δl
g
𝐺m
0 (𝑇) = −𝑅 ⋅ 𝑇 ⋅ ln(𝑝 𝑝0⁄ ) was used. 

 


