
Software
Security

FU NDAMENTALS
LESS CO MMO N V U LNERAB ILITIES

APM@FEU P

Software Security

➢The lack of the security objectives (CIA) fulfillment, results from
vulnerabilities introduced due to poor programming practices, or
bad security mechanisms’ design

▪ Software related flaws originate many times from
• Unvalidated input, allowing not intended effects in execution
• Lack of flow execution synchronization

• Bad design or implementation of fundamental security mechanisms like

entity identification, authentication, and authorization (access control)

➢Main cause of the possibility of exploitation is the insufficient
checking and validation of program input

➢ Some applications allow code construction and execution from
user input, without predicting, restricting, or handling all the side
effects

➢ In others, those effects can be achieved by unintended program
memory manipulation

➢Awareness of these issues by programmers is critical

APM@FEUP 2

Software Quality versus Security

➢ Have different focus

▪ In the first, the focus is reliability

▪ In the second, is the assurance of security goals (CIA + ...)

➢ Reliability

▪ The lack of reliability results from the accidental failures of a program

▪ And those are mainly due to random unanticipated input

▪We can improve it by using structured design and testing

▪ Reliability is related not to the number of bugs, but how often they are
triggered in the normal use of an application

➢ Software security

▪ The lack of security results usually from attackers choosing particular
inputs, specially targeting buggy code to perform an exploit

▪ Often triggered by very unlikely inputs (in normal use)

▪ Common testing (functionality) does not identify these flaws

APM@FEUP 3

Concepts for Software Security

APM@FEUP 4

Concepts and Relationships

Weakness – A defect in the functionality (design or implementation)

Vulnerabilities and Weaknesses

➢ MITRE CWE and CVE are valuable databases

▪ Common Weaknesses Enumeration – types, languages, examples
• Community based taxonomy (tree of weaknesses) – https://cwe.mitre.org

▪ Common Vulnerabilities and Exposures – list of real cases vulnerabilities
• Since 1999 – includes popular applications, system, and OS components

• Cross referenced with CWE – https://cve.mitre.org

• Feeds the NIST NVD (National Vulnerabilities Database, with more info)

APM@FEUP 5

https://cwe.mitre.org/
https://cve.mitre.org/

Attack patterns and techniques

➢MITRE maintain also databases related to attacks
▪ CAPEC, Common Attack Pattern Enumeration and Classification
• https://capec.mitre.org

▪ ATT&CK, Adversarial Tactics, Techniques & Common Knowledge
• https://attack.mitre.org
• They aim to provide information about how adversaries perform attacks
• CAPEC focuses on application attacks, presents a tree (hierarchy) of mechanisms of

attack, with description, possible prerequisites, mitigations, and associated
weaknesses (CWEs)
• Example: Mechanism of attack: Subvert Access Control → Exploitation of Trusted Identifiers →

Session Hijacking → Reusing Session IDs (aka Session Replay) These mechanisms are linked to
several CWEs, like e.g., Authentication Bypass by Spoofing (CWE-290)

• ATT&CK focuses on IT systems (clients, servers, network devices, containers, cloud
systems, and mobile clients)
• Tries to characterize adversarial behavior and actions, comprising the pre-exploit, exploit, and

post-exploit phases

• Describes tactics (tactical goal, the reason for an action), techniques (and sub-techniques – lower
level) which contains information about how a goal could be achieved by performing an action,
and procedures (specific implementations of techniques and sub-techniques)

• Example: Tactic: Credential access (goal: steal account names and passwords); possible technique:
brute force (subs: password guessing, cracking, spraying, credential stuffing); possible procedure:
use Chimera; possible mitigation: enforce password policies

APM@FEUP 6

The 25 most frequent CWEs (2022)

APM@FEUP 7

Rank ID Name Rank Change vs. 2021

1 CWE-787 Out-of-bounds Write 0

2 CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') 0

3 CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') +3

4 CWE-20 Improper Input Validation 0

5 CWE-125 Out-of-bounds Read -2

6 CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') -1

7 CWE-416 Use After Free 0

8 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 0

9 CWE-352 Cross-Site Request Forgery (CSRF) 0

10 CWE-434 Unrestricted Upload of File with Dangerous Type 0

11 CWE-476 NULL Pointer Dereference +4

12 CWE-502 Deserialization of Untrusted Data +1

13 CWE-190 Integer Overflow or Wraparound -1

14 CWE-287 Improper Authentication 0

15 CWE-798 Use of Hard-coded Credentials +1

16 CWE-862 Missing Authorization +2

17 CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection') +8

18 CWE-306 Missing Authentication for Critical Function -7

19 CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer -2

20 CWE-276 Incorrect Default Permissions -1

21 CWE-918 Server-Side Request Forgery (SSRF) +3

22 CWE-362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') +11

23 CWE-400 Uncontrolled Resource Consumption +4

24 CWE-611 Improper Restriction of XML External Entity Reference -1

25 CWE-94 Improper Control of Generation of Code ('Code Injection') +3

http://cwe.mitre.org/top25

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/862.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/276.html
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/400.html
https://cwe.mitre.org/data/definitions/611.html
https://cwe.mitre.org/data/definitions/94.html

Common areas of insecurity

➢ Allowing memory corruption
▪ Stack, Heap and Data area from buffer / array overflow

➢ Input injection
▪ Lack of input sanitization
• User, environment, files, links, string formatting, network, databases, …

➢ Concurrency
▪ Race conditions

➢ Access control
▪ Improper authentication, privilege verification, authorization

➢ Web application vulnerabilities
▪ XSS, CSRF, XXE, SSRF, Clickjacking

➢ Poor cryptography implementation
▪ Random numbers, dated algorithms, incorrect parameterization

APM@FEUP 8

Secure programming best practices

APM@FEUP 9

• Secure software design

• Language-specific problems

• Application-specific issues

• Authentication, authorization

Program Component

Validate input Respond
judiciously

Call other code
carefully

(trusted and
respecting its
security rules)

Input and output

➢ Programs deal with data from inputs and produce outputs

▪ Inputs can come from many different sources

▪ All that come from outside the program should always be considered
not trusted

▪ Also, outputs to other programs (now or later) should be validated to
not produce invalid or dangerous representations

▪ Almost all past attacks and exploits use malicious inputs

APM@FEUP 10

A simple example (path traversal)

SSIN / SSE 11

Consider the following code (in perl) to create a new file with a sample line in
the current directory

use strict;
my $filename = <STDIN>;
open (FILENAME, “>> “ . $filename) or die $!;
print FILENAME “Hello”;
close FILENAME;

it’s expected that the user
simply inputs a file name:
<name>.<ext>

But what if it writes a full or relative path?
We could ruin an essential file. Example: “\boot.ini”

So, all input should be checked, even in simple scripts

All input can be evil! – you must check it

SSIN / SSE 12

Canonicalization / Normalization

➢ Canonicalization

▪ Reducing the input to its simplest equivalent known form
• Examples: . and .. in path names (reduce to dir names); conversation of case-

insensitive strings to all lower case

➢ Normalization

▪ Convertion to a standard form (not necessarily the simplest)
• Example: using a standard form of Unicode

• Java SE6 uses Unicode V4, but Java SE7 uses Unicode V6

➢ Need of canonicalization – example

▪ An application forbids <script> in its input (with Unicode angle brackets)

▪ The user inputs “\uFE64” + “script” + “\uFE65” which are ‘small less-
than’ and ‘small greater-than’ characters

▪ They normalize in Unicode to standard angle brackets

▪Without normalization the forbidden input would not be caught

SSIN / SSE 13

Sanitization

➢ Sanitization

▪ The process of ensuring that data does not violate the security policy
• Often converts valid but insecure input into invalid

• Applies also to output

• To prevent sensitive information leak

▪ Examples
• Elimination of unwanted characters from input string by means of removing,

replacing, encoding, or escaping the characters

• Prevent user from specifying pathnames to files they lack privilege to access

• Prevent user from inputting JavaScript or SQL

SSIN / SSE 14

boolean isPasswordCorrect(String name, char[] hash) throws SQLException {
...
String sqlString= "SELECT * FROM Users WHERE name = '”+ name + "' AND password = '" + hash + “’”;
…
if (!rs.next())

return false;
 …

name and hash must be sanitized to prevent SQL injection!

Validation

➢ Validation

▪ The process of checking inputs to ensure that they fall within the
intended input domain of the receiver
• Prevent errors by disallowing invalid inputs

• Does not modify input

▪ Examples
• Does a numeric value fall within the acceptable boundaries ?

• Does the file name supplied exist in the current directory (for reading) ?

• A person name contain symbols or digits ?

• Normalized dates have reasonable values (hours, days, months, years) ?

• Forbidden words or constructs are included ?

▪ Use classes or high-level constructs to represent valid input

SSIN / SSE 15

class UserInput {
 …
 bool Init(char *str) {
 if (!Validate(str)) {
 return false;
 } else {
 input = str;
 return true;
 }

const char * GetInput() { return input.c_str(); }
 unsigned long Length() { return input.length(); }

 private:
 bool Validate(const char *str);
 string input;
}

Use regular expressions for a model

➢ Specify the valid input model using a regular expression

▪ Never do the opposite – trying to validate verifying that it is not invalid

➢ Validate an image file name for a set of formats

▪ Consider filenames with extensions bmp, jpeg, jpg, gif or png

SSIN / SSE 16

bool IsOKExtension(string FileName) {
 Regex r = new Regex(@”.(bmp|jpg|gif|png|jpeg)”, RegexOptions.IgnoreCase);
 return r.Match(Filename).Success;
}

The above code has a glitch. It will return true for file names containing the
defined extensions, but they can occur in any place

bool IsOKExtension(string FileName) {
 Regex r = new Regex(@”.(bmp|jpg|gif|png|jpeg)$”, RegexOptions.IgnoreCase);
 return r.Match(Filename).Success;
}

You should use the end of string symbol ($). A specification for an 8.3 filename
must have the start symbol (^). Example: ^[a-z]{1,8}\.[a-z]{1,3}$

Race conditions exploits

➢ Race condition

▪ Happen two concurrent execution flows access a shared resource and
the result depends on the order of access

➢ The classic example (in PHP)

SSIN / SSE 17

function withdraw($amount) {
 $balance = getbalance();
 if ($amount <= $balance) {
 $balance = $balance - $amount;
 echo “You have withdrawn: $amount”;
 saveBalance($balance);
 }
 else {
 echo “Insufficient funds.”;
 }
}

if two requests run the function almost
at the same time, it’s possible that the
first condition succeeds for both, even if
the balance is less than the sum of the two
withdrawals.

This is a race condition known as TOCTTOU (Time-of-check to Time-of-use)
It occurs when there a windows between checking a resource for use and
effectively using it. In that window it’s possible that the resource change making
the checked condition invalid.

CWE-367 refers to the TOCTTOU condition

TOCTTOU prevention

➢ The operation of checking and use should be indivisible

▪ Indivisible sequential sections of instructions are called critical sections

▪ In order to make a section of code indivisible we need to prevent other
execution flows from entering the same or related critical section
• those flows should wait until the first leaves execution of the section

➢ We need global objects (relative to the concurrent flows) to
control the execution of critical sections

▪mutexes – only one flow at time can enter the critical section

▪ semaphores – allow one or more flows (depends on initialization)

▪ these objects can be used for other forms of synchronization between
execution flows

SSIN / SSE 18

critical section

thread 1 has entered the
critical section

thread 2 should block
and wait for thread 1 leaving the
critical section

Difficulties in preventing TOCTTOU

➢ Sometimes we don’t have the needed synchronization

▪ Race conditions between unrelated programs

➢ Example

SSIN / SSE 19

A set-UID program wants to write to some file …
Because root can write on any file it should check the real user permission

…
if (!access(“/tmp/X”, W_OK)) {
 /* check if the real user has the write permission on the file */
 f = open(“/tmp/X”, O_WRITE);
 write_to_file(f);
}
else {
 fprintf(stderr, “Permission denied!\n”);
}
…

open() only checks (indivisibly) the effective user.
there is no way here of making the calls to access() and open() execute indivisibly.

Exploit the window of TOCTTOU

➢ There is a window between the access() check and open()

▪ In that window another program can create a link to another file

SSIN / SSE 20

/tmp/X is a regular
file from the real user

access()
succeeds

window

context switch

context switch

make
/tmp/X → /etc/passwd

other program

open()
succeeds

write_to_file()
writes to /etc/passwd

Stop the exploit

➢In this case we cannot use synchronization, but the flaw is
due to the lack of applying the Principle of Least Privilege

▪ In order to write to a user file, we don’t need root privileges in a set_UID
program
• set_UID programs should use root privileges only to perform the tasks that

real users cannot

• the effective user id should become the real user all other tasks

SSIN / SSE 21

uid_t real_uid = getuid();
uid_t eff_uid = geteuid();

 // for writing the real user file
seteuid(real_uid);
f = open (“/tmp/X”, O_WRITE); // checks the effective user permissions on the file
if (f != -1)
 write_to_file(f);
else
 fprintf(stderr, “Permission denied!\n”);

 // for tasks where root privilegie is needed
seteuid(eff_uid);

Another race condition – dirty COW

➢ Linux introduced this vulnerability in 2007

▪ Discovered only in 2016

▪ Results from lack of indivisibility in write() on copy-on-write pages
• in this case write() performs 3 things: makes a copy of the mem page, change

the page table of the process to point to it, and write to the memory

• one example of this kind of page is a PRIVATE memory mapped file

SSIN / SSE 22

physical
memory

process
virtual
memory

memory
mapped
file

if
MAP_PRIVATE
copy-on-write

initial
mapping

try to write
①

create and
copy

② effective
write

new
mapping

③
④

Exploit

➢ There is a system call to get rid of the copy-on-write page

▪ It’s madvise() with a parameter MADV_DONTNEED

▪ The dirty page is freed, and the initial mapping is restored
• The previous writes are lost, but the initial mapping remains COW

➢ What if

▪madvise() is called from another thread …

▪… at the same time as the write on the MAP_PRIVATE mapping

▪ It can happen that the restoration of the initial mapping is done
between steps ③ and ④ of previous diagram

▪ If the initial mapping is to a read only file (e.g., from another user or
even root) the process now writes to it

➢ Solution

▪ In recent kernels the code of write() is now indivisible making a single
critical section (are you running a recent kernel ? …)

SSIN / SSE 23

Object deserialization

➢ Many languages, frameworks, or even libraries allow serial
(byte stream) representations of instantiated objects

▪ Java, Python, Ruby and Rails, PHP, .NET, ...

▪ Serialization is used to transfer data in object form or write it to a
persistent store

▪ Aka ‘marshalling’ or ‘pickling’

▪ Several Java and other technologies are layered over serialization
• RMI, JMX, …

➢ Deserialization of untrusted data can lead to exploits

▪ Knowing the serialized layout of objects or object trees allow for
serialized representation manipulation, possibly leading to
• DoS (exhaustion of resources, or ‘impossible’ objects)

• Data visualization

• Data falsification

• Execution of ‘gadget’ code

SSIN / SSE 24

Deserialization and validation in Java

➢ Deserialization is done using readObject() of
ObjectInputStream

SSIN / SSE 25

public static <T> T load(Path p) throws IOException, ClassNotFoundException {
 try (ObjectInputStream s = new ObjectInputStream(new InputStream(p))) {
 return (T) (s.readObject());
 }
}

public class Lottery implements Serializable {
private int ticket = 1;
SecureRandom draw = new SecureRandom();
public Lottery(int ticket) {

this.ticket = (int) (Math.abs(ticket % 20000) + 1); // some validation
}

 public int getTicket() { return this.ticket; }
public int roll() {

this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
return this.ticket;

}
 private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {

in.defaultReadObject();
}

Constructor is not executed

Validating deserialized objects

➢ Deserialization builds new objects

▪ Does not invoke any constructor
• Bypasses any state validation

▪ Skips transient and static fields

• They will gain the language default value

• Could be different from your safe default value

▪ You should use the ObjectInputValidation interface and override
readObject()

SSIN / SSE 26

public final class Lottery implements Serializable, ObjectInputValidation {
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {

in.registerValidation(this, 5); // triggers validateObject() once the object is created
in.defaultReadObject();

}

public void validateObject() throws InvalidObjectException {
if (this.ticket > 20000 || this.ticket <= 0) {

// plus other checks
throw new InvalidObjectException("Not in range!");

}
}

Other perils

➢ Even when validating serialized objects, it’s possible to get
careful crafted objects for malicious purposes

▪ Deserialization always build objects first (possible exception later)

▪ In some circumstances they can execute code already present in the
classpath
• E.g., through an AnnotationInvocationHandler

▪ Joining carefully existent methods it’s possible to execute other code
(like a terminal with a shell)
• Those methods to achieve a certain goal, are not uncommon (called ‘gadgets’)

• E.g., the huge Apache Commons library

➢ Mitigations
▪ Complete defense – do not deserialize objects (use other ways of transmitting data)

▪ If you must, only accept trusted objects
• They should be encrypted, signed, and verified before deserialization

• Lock down the sources of serialized data

• RMI servers should only contact trusted machines

SSIN / SSE 27

Demo

➢With a specially crafted serialized object it’s possible to run
arbitrary code (present in some library of the application)

➢ There are tools to create these serialized objects

▪ See: https://github.com/frohoff/ysoserial

▪ And: https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
APM@FEUP 28

public InvocationHandler getObject(final String command) throws Exception {
 final String[] execArgs = new String[] { command };
 // inert chain for setup
 final Transformer transformerChain = new ChainedTransformer(new Transformer[]{ new ConstantTransformer(1) });
 // real chain for after setup
 final Transformer[] transformers = new Transformer[] {
 new ConstantTransformer(Runtime.class),
 new InvokerTransformer("getMethod", new Class[] {
 String.class, Class[].class }, new Object[] {
 "getRuntime", new Class[0] }),
 new InvokerTransformer("invoke", new Class[] {
 Object.class, Object[].class }, new Object[] {
 null, new Object[0] }),
 new InvokerTransformer("exec",
 new Class[] { String.class }, execArgs),
 new ConstantTransformer(1) };
 final Map innerMap = new HashMap();
 final Map lazyMap = LazyMap.decorate(innerMap, transformerChain);
 final Map mapProxy = Gadgets.createMemoitizedProxy(lazyMap, Map.class);
 final InvocationHandler handler = Gadgets.createMemoizedInvocationHandler(mapProxy);
 Reflections.setFieldValue(transformerChain, "iTransformers", transformers); // arm with actual transformer chain
 return handler;
}

Using Apache
Commons Collection
library

https://github.com/frohoff/ysoserial
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet

XXE – XML External Entity

➢XML is often used to transport data to a web app

▪ XML is mostly self explanatory, in its hierarchical data structures

▪ Example:

▪ To verify that an XML document is according to its intended format a
DTD can be included
• DTD means Document Type Definition and can be defined in the XML doc

APM@FEUP 29

<message>
 <to> Jim </to>
 <from> Janis </from>
 <subject> Meeting </subject>
 <body> Let’s meet on Friday! </body>
</message>

<?xml version=“1.0”?>
<!DOCTYPE message [
 <!ELEMENT message (to, from, subject, body)>
 <!ELEMENT to(#PCDATA) >
 <!ELEMENT from (#PCDATA) >
 <!ELEMENT subject (#PCDATA) >
 <!ELEMENT body (#PCDATA) >
] >

#PCDATA is the data type, and in this
 case, stands for Parsed Character Data,
 which is string data

The DTD can be written in the first
part of an XML document or put on
a separate file, and included in the XML,
specifying a URI/URL

External DTDs and ENTITIES

➢In an XML document its possible to include an external DTD

➢It is also possible to define Entities

▪ Entities are like variables, that can be referenced elsewhere, and with a
value in the XML document or externally
• The general form of defining an entity is like:

APM@FEUP 30

<?xml version=“1.0”?>
<!DOCTYPE message SYSTEM “message.dtd”>
<message>
 <to> Jim </to>
 <from> Janis </from>
 <subject> Meeting </subject>
 <body> Let’s meet on Friday! </body>
</message>

In this case the actual DTD is in the
file “message.dtd”
Note the use of the SYSTEM keyword

<!ENTITY entity-name “entity value” >

Example:
 <!ENTITY email “some@email.com” >
 <!ENTITY author “John Doe &email;” >
 <author> &author; </author>

Result for the author tag:
<author> “John Doe some@email.com” </author>

External ENTITIES

➢It is also possible to have entities in external files or URLs

▪ The SYSTEM keyword is also used in this case

➢When an app has an XML document as input

▪ It will try to interpret it, usually using a framework or library parser
• If it finds DOCTYPEs or ENTITYs with the SYSTEM keyword the parser will try to

get the external definitions

➢Possible vulnerability

▪ Not previously checking these external references (input not verified)

▪ A carefully crafted XML input can cause unexpected side effects (injection)

APM@FEUP 31

<!ENTITY entity-name SYSTEM “URI or URL” >

Example:
 <!ENTITY author SYSTEM “http://example.com/entities.dtd” >
 <author> &author; </author>

<author> John Doe some@email.com </author>

PHP Example

APM@FEUP 32

<?php
$xml = <<<XML
<?xml version=“1.0” encoding=“UTF-8”?>
<user>
 <name>John Doe</name>
 <email>some@email.com</email>
</user>
XML;

$ch = curl_init(“http://localhost/verify.php”);
curl_setopt($ch, CURLOPT_HEADER, false);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $xml);
$data = curl_exec($ch);
if (curl_errno($ch)) {
 print curl_error($ch);
}
else {
 echo “Response:
” . $data;
}
curl_close($ch);
?>

<?php
libxml_disable_entity_loader(false);
$xm = file_get_contents(‘php://input’);
$dom = new DOMDocument();
$dom->loadXML($xm, LIBXML_NOENT | LIBXML_DTDLOAD);
$user = simplexml_import_dom($dom);
$name = $user->name;
$email = $user->email;
echo “<pre>User verified (name):
 $name</pre>”;
?>

verify.php (the service that receives the
XML document)

<?xml version …
<!DOCTYPE own [<!ELEMENT own ANY >
<!ENTITY own SYSTEM “file:///etc/passwd” >]>
<user>
 <name>&own;</name>
…

Input crafted with an external Entity

Easy to prevent, but without external entities

send.php (sending an XML document
As input to another service (POST))

SSRF – Server-Side Request Forgery

➢It happens when a web app allows the user to make requests
to arbitrary URIs, in the server code

▪ Because they are on the server, they use the server account privileges

APM@FEUP 33

web app
intranet

resources

services

external
server

①



SSRF vulnerability

➢ This vulnerability results from having client code or services
with the URL exposed, or accepting any kind of parameter
with a URL

▪ Not verifying that the URL is acceptable (which can be difficult)

➢The result of the request can be shown in the user browser

▪We say that we have a regular or in-band SSRF vulnerability

➢The request causes some effect, but the result is not directly
shown

▪We say we have a blind or out-of-band SSRF vulnerability

▪We can test if it works making the app request our own server …

➢There are tools to help find these types of vulnerabilities

▪ The Burp suite and its extension – Collaborator Everywhere

APM@FEUP 34

SSRF prevention

➢Application layer

▪ Sanitize and validate all client input data

▪ Create a whitelist of allowed URL schemas, ports, and destinations

▪ Do not send raw responses of requests to the browser

▪ Disable redirections

▪ Do not use deny lists or regular expressions (can be circumvented)

➢Network layer

▪ Segment your resources in separate networks

▪ Deny by default firewalls in intranet allowing only essential traffic

➢Biblio
• Preventing SSRF - http://seclab.nu/static/publications/sac21-prevent-ssrf.pdf

• A New Era of SSRF - https://www.blackhat.com/docs/us-17/thursday/us-17-
Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-in-Trending-Programming-
Languages.pdf

APM@FEUP 35

http://seclab.nu/static/publications/sac21-prevent-ssrf.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-in-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-in-Trending-Programming-Languages.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-in-Trending-Programming-Languages.pdf

SSRF – A simple demo

APM@FEUP 36

<!--Create a static dropdown box-->
<form id="L" method="post">
 <select name="Language">
 <option value="http://localhost:8001/en.php">English</option>
 <option value="http://localhost:8001/pt.php">Portuguese</option>
 </select>
 <button type="submit" class="button">Submit</button>
</form>

<?php
if (isset($_POST['Language'])) {
 $url=$_POST['Language'];
 $data=file_get_contents($url);
 echo "Message:
".$data;
}
?>

A vulnerable server

URLs present in the
client code

The request which is done on the
server …

<!--Create a static dropdown box-->
<form id="L" method="post">
 <select name="Language">
 <option value="http://localhost:8001/en.php">English</option>
 <option value="http://localhost:8001/pt.php">Portuguese</option>
 </select>
 <button type="submit" class="button">Submit</button>
</form>

The client side

Top secure coding practices (1)

➢Validate input. Validate input from all untrusted data sources
(including command line arguments, network interfaces,
environmental variables, and user-controlled files).

➢Heed compiler warnings. Use the highest warning level and
version of your compiler and eliminate warnings by modifying
code. Use static and dynamic analysis tools to detect and eliminate
additional security flaws. Activate security protection flags.

➢Architect and design for security policies. Create a software
architecture and design your software to implement and enforce
security policies (e.g., different privilege levels).

➢Keep it simple. Keep the design as simple and small as possible.

➢Default deny. Base access decisions on permission rather than
exclusion.

➢Adhere to the principle of least privilege. Every process should
execute with the least set of privileges necessary to complete the
job and in the shortest time.

SSIN / SSE 37

Top secure coding practices (2)

➢Sanitize data sent to other systems. Sanitize all data passed to other
subsystems (output sanitization). It can contain unintended information.

➢Practice defense in depth. Manage risk with multiple defensive
strategies. Verify everything with multiple rules and implementations.

➢Use effective quality assurance techniques. Good quality assurance
techniques like fuzz testing, penetration testing, and source code audits.

➢Adopt a secure coding standard. Develop and/or apply a secure coding
standard for your target development language and platform. Do not rely
in very recent or seldom used languages or frameworks.

➢Define security requirements. Identify and document security
requirements early in the development life cycle.

➢Model threats. Use threat modeling to anticipate the threats to which the
software will be subjected. Threat modeling involves identifying key
assets, decomposing the application, identifying and categorizing the
threats to each asset or component, rating the threats based on a risk
ranking, and then developing threat mitigation strategies that are
implemented in designs, code, and test cases.

SSIN / SSE 38

SEI Coding Standards

➢Collection of rules to follow when programming in a
designated language

▪ SEI has developed thorough standards for the main 3 languages (Java, C
and C++); also, Android and Perl
• Available at https://www.securecoding.cert.org/confluence/x/BgE

➢Also books (free download)

SSIN / SSE 39

2016 Edition
99 rules for a safe coding standard

2016 Edition
83 additional rules

More coding standards and guidelines

SSIN / SSE 40

Java coding standard
152 rules for safe coding

Java coding guidelines
with 75 additional recommendations

recommendations and
in-depth analysis for C and C++

	Slide 1: Software Security
	Slide 2: Software Security
	Slide 3: Software Quality versus Security
	Slide 4: Concepts for Software Security
	Slide 5: Vulnerabilities and Weaknesses
	Slide 6: Attack patterns and techniques
	Slide 7: The 25 most frequent CWEs (2022)
	Slide 8: Common areas of insecurity
	Slide 9: Secure programming best practices
	Slide 10: Input and output
	Slide 11: A simple example (path traversal)
	Slide 12: All input can be evil! – you must check it
	Slide 13: Canonicalization / Normalization
	Slide 14: Sanitization
	Slide 15: Validation
	Slide 16: Use regular expressions for a model
	Slide 17: Race conditions exploits
	Slide 18: TOCTTOU prevention
	Slide 19: Difficulties in preventing TOCTTOU
	Slide 20: Exploit the window of TOCTTOU
	Slide 21: Stop the exploit
	Slide 22: Another race condition – dirty COW
	Slide 23: Exploit
	Slide 24: Object deserialization
	Slide 25: Deserialization and validation in Java
	Slide 26: Validating deserialized objects
	Slide 27: Other perils
	Slide 28: Demo
	Slide 29: XXE – XML External Entity
	Slide 30: External DTDs and ENTITIES
	Slide 31: External ENTITIES
	Slide 32: PHP Example
	Slide 33: SSRF – Server-Side Request Forgery
	Slide 34: SSRF vulnerability
	Slide 35: SSRF prevention
	Slide 36: SSRF – A simple demo
	Slide 37: Top secure coding practices (1)
	Slide 38: Top secure coding practices (2)
	Slide 39: SEI Coding Standards
	Slide 40: More coding standards and guidelines

