
Software
Security

FU NDAM ENTA LS
LES S C OMM O N V UL NERAB I LIT IES

AP M @F EU P

Software Security
The lack of the security objectives (CIA) fulfillment, results from

vulnerabilities introduced due to poor programming practices, or
bad security mechanisms’ design
 Software related flaws originate many times from

• Unvalidated input, allowing not intended effects in execution
• Lack of flow execution synchronization
• Bad design or implementation of fundamental security mechanisms like

entity identification, authentication, and authorization (access control)

Main cause of the possibility of exploitation is the insufficient
checking and validation of program input

 Some applications allow code construction and execution from
user input, without predicting, restricting, or handling all the side
effects

 In others, those effects can be achieved by unintended program
memory manipulation

Awareness of these issues by programmers is critical

APM@FEUP 2

Software Quality versus Security
Have different focus
 In the first, the focus is reliability

 In the second, is the assurance of security goals (CIA + ...)

 Reliability
 The lack of reliability results from the accidental failures of a program

 And those are mainly due to random unanticipated input

We can improve it by using structured design and testing

 Reliability is related not to the number of bugs, but how often they are
triggered in the normal use of an application

 Software security
 The lack of security results usually from attackers choosing particular

inputs, specially targeting buggy code to perform an exploit

 Often triggered by very unlikely inputs (in normal use)

 Common testing (functionality) does not identify these flaws

APM@FEUP 3

Concepts for Software Security

APM@FEUP 4

Concepts and Relationships

Weakness – A defect in the functionality (design or implementation)

Vulnerabilities and Weaknesses
MITRE CWE and CVE are valuable databases
 Common Weaknesses Enumeration – types, languages, examples

• Community based taxonomy (tree of weaknesses) – https://cwe.mitre.org

 Common Vulnerabilities and Exposures – list of real cases vulnerabilities
• Since 1999 – includes popular applications, system, and OS components
• Cross referenced with CWE – https://cve.mitre.org
• Feeds the NIST NVD (National Vulnerabilities Database, with more info)

APM@FEUP 5

Attack patterns and techniques
MITRE maintain also databases related to attacks
 CAPEC, Common Attack Pattern Enumeration and Classification

• https://capec.mitre.org

 ATT&CK, Adversarial Tactics, Techniques & Common Knowledge
• https://attack.mitre.org
• They aim to provide information about how adversaries perform attacks

• CAPEC focuses on application attacks, presents a tree (hierarchy) of mechanisms of
attack, with description, possible prerequisites, mitigations, and associated
weaknesses (CWEs)
• Example: Mechanism of attack: Subvert Access Control Exploitation of Trusted Identifiers

Session Hijacking Reusing Session IDs (aka Session Replay) These mechanisms are linked to
several CWEs, like e.g., Authentication Bypass by Spoofing (CWE-290)

• ATT&CK focuses on IT systems (clients, servers, network devices, containers, cloud
systems, and mobile clients)
• Tries to characterize adversarial behavior and actions, comprising the pre-exploit, exploit, and

post-exploit phases
• Describes tactics (tactical goal, the reason for an action), techniques (and sub-techniques – lower

level) which contains information about how a goal could be achieved by performing an action,
and procedures (specific implementations of techniques and sub-techniques)

• Example: Tactic: Credential access (goal: steal account names and passwords); possible technique:
brute force (subs: password guessing, cracking, spraying, credential stuffing); possible procedure:
use Chimera; possible mitigation: enforce password policies

APM@FEUP 6

The 25 most frequent CWEs (2022)

APM@FEUP 7

Rank Change vs. 2021NameIDRank

0Out-of-bounds WriteCWE-7871

0Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')CWE-792

+3Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')CWE-893

0Improper Input ValidationCWE-204

-2Out-of-bounds ReadCWE-1255

-1Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')CWE-786

0Use After FreeCWE-4167

0Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')CWE-228

0Cross-Site Request Forgery (CSRF)CWE-3529

0Unrestricted Upload of File with Dangerous TypeCWE-43410

+4NULL Pointer DereferenceCWE-47611

+1Deserialization of Untrusted DataCWE-50212

-1Integer Overflow or WraparoundCWE-19013

0Improper AuthenticationCWE-28714

+1Use of Hard-coded CredentialsCWE-79815

+2Missing AuthorizationCWE-86216

+8Improper Neutralization of Special Elements used in a Command ('Command Injection')CWE-7717

-7Missing Authentication for Critical FunctionCWE-30618

-2Improper Restriction of Operations within the Bounds of a Memory BufferCWE-11919

-1Incorrect Default PermissionsCWE-27620

+3Server-Side Request Forgery (SSRF)CWE-91821

+11Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')CWE-36222

+4Uncontrolled Resource ConsumptionCWE-40023

-1Improper Restriction of XML External Entity ReferenceCWE-61124

+3Improper Control of Generation of Code ('Code Injection')CWE-9425

http://cwe.mitre.org/top25

Common areas of insecurity
Allowing memory corruption
 Stack, Heap and Data area from buffer / array overflow

 Input injection
 Lack of input sanitization

• User, environment, files, links, string formatting, network, databases, …

Concurrency
 Race conditions

Access control
 Improper authentication, privilege verification, authorization

Web application vulnerabilities
 XSS, CSRF, XXE, SSRF, Clickjacking

 Poor cryptography implementation
 Random numbers, dated algorithms, incorrect parameterization

APM@FEUP 8

Secure programming best practices

APM@FEUP 9

• Secure software design
• Language-specific problems
• Application-specific issues
• Authentication, authorization

Program Component

Validate input Respond
judiciously

Call other code
carefully

(trusted and
respecting its
security rules)

Input and output
 Programs deal with data from inputs and produce outputs
 Inputs can come from many different sources

 All that come from outside the program should always be considered
not trusted

 Also, outputs to other programs (now or later) should be validated to
not produce invalid or dangerous representations

 Almost all past attacks and exploits use malicious inputs

APM@FEUP 10

A simple example (path traversal)

SSIN / SSE 11

Consider the following code (in perl) to create a new file with a sample line in
the current directory

use strict;
my $filename = <STDIN>;
open (FILENAME, “>> “ . $filename) or die $!;
print FILENAME “Hello”;
close FILENAME;

it’s expected that the user
simply inputs a file name:
<name>.<ext>

But what if it writes a full or relative path?
We could ruin an essential file. Example: “\boot.ini”

So, all input should be checked, even in simple scripts

All input can be evil! – you must check it

SSIN / SSE 12

Canonicalization / Normalization
Canonicalization
 Reducing the input to its simplest equivalent known form

• Examples: . and .. in path names (reduce to dir names); conversation of case-
insensitive strings to all lower case

Normalization
 Convertion to a standard form (not necessarily the simplest)

• Example: using a standard form of Unicode
• Java SE6 uses Unicode V4, but Java SE7 uses Unicode V6

Need of canonicalization – example
 An application forbids <script> in its input (with Unicode angle brackets)

 The user inputs “\uFE64” + “script” + “\uFE65” which are ‘small less-
than’ and ‘small greater-than’ characters

 They normalize in Unicode to standard angle brackets

Without normalization the forbidden input would not be caught

SSIN / SSE 13

Sanitization
 Sanitization
 The process of ensuring that data does not violate the security policy

• Often converts valid but insecure input into invalid
• Applies also to output

• To prevent sensitive information leak

 Examples
• Elimination of unwanted characters from input string by means of removing,

replacing, encoding, or escaping the characters
• Prevent user from specifying pathnames to files they lack privilege to access
• Prevent user from inputting JavaScript or SQL

SSIN / SSE 14

boolean isPasswordCorrect(String name, char[] hash) throws SQLException {
...
String sqlString= "SELECT * FROM Users WHERE name = '”+ name + "' AND password = '" + hash + “’”;
…
if (!rs.next())

return false;
…

name and hash must be sanitized to prevent SQL injection!

Validation
Validation
 The process of checking inputs to ensure that they fall within the

intended input domain of the receiver
• Prevent errors by disallowing invalid inputs
• Does not modify input

 Examples
• Does a numeric value fall within the acceptable boundaries ?
• Does the file name supplied exist in the current directory (for reading) ?
• A person name contain symbols or digits ?
• Normalized dates have reasonable values (hours, days, months, years) ?
• Forbidden words or constructs are included ?

 Use classes or high-level constructs to represent valid input

SSIN / SSE 15

class UserInput {
…
bool Init(char *str) {

if (!Validate(str)) {
return false;

} else {
input = str;
return true;

}

const char * GetInput() { return input.c_str(); }
unsigned long Length() { return input.length(); }

private:
bool Validate(const char *str);
string input;

}

Use regular expressions for a model
 Specify the valid input model using a regular expression
 Never do the opposite – trying to validate verifying that it is not invalid

Validate an image file name for a set of formats
 Consider filenames with extensions bmp, jpeg, jpg, gif or png

SSIN / SSE 16

bool IsOKExtension(string FileName) {
Regex r = new Regex(@”.(bmp|jpg|gif|png|jpeg)”, RegexOptions.IgnoreCase);
return r.Match(Filename).Success;

}

The above code has a glitch. It will return true for file names containing the
defined extensions, but they can occur in any place

bool IsOKExtension(string FileName) {
Regex r = new Regex(@”.(bmp|jpg|gif|png|jpeg)$”, RegexOptions.IgnoreCase);
return r.Match(Filename).Success;

}

You should use the end of string symbol ($). A specification for an 8.3 filename
must have the start symbol (^). Example: ^[a-z]{1,8}\.[a-z]{1,3}$

Race conditions exploits
 Race condition
 Happen two concurrent execution flows access a shared resource and

the result depends on the order of access

The classic example (in PHP)

SSIN / SSE 17

function withdraw($amount) {
$balance = getbalance();
if ($amount <= $balance) {

$balance = $balance - $amount;
echo “You have withdrawn: $amount”;
saveBalance($balance);

}
else {

echo “Insufficient funds.”;
}

}

if two requests run the function almost
at the same time, it’s possible that the
first condition succeeds for both, even if
the balance is less than the sum of the two
withdrawals.

This is a race condition known as TOCTTOU (Time-of-check to Time-of-use)
It occurs when there a windows between checking a resource for use and
effectively using it. In that window it’s possible that the resource change making
the checked condition invalid.

CWE-367 refers to the TOCTTOU condition

TOCTTOU prevention
The operation of checking and use should be indivisible
 Indivisible sequential sections of instructions are called critical sections

 In order to make a section of code indivisible we need to prevent other
execution flows from entering the same or related critical section
• those flows should wait until the first leaves execution of the section

We need global objects (relative to the concurrent flows) to
control the execution of critical sections
mutexes – only one flow at time can enter the critical section

 semaphores – allow one or more flows (depends on initialization)

 these objects can be used for other forms of synchronization between
execution flows

SSIN / SSE 18

critical section

thread 1 has entered the
critical section

thread 2 should block
and wait for thread 1 leaving the
critical section

Difficulties in preventing TOCTTOU
 Sometimes we don’t have the needed synchronization
 Race conditions between unrelated programs

 Example

SSIN / SSE 19

A set-UID program wants to write to some file …
Because root can write on any file it should check the real user permission

…
if (!access(“/tmp/X”, W_OK)) {

/* check if the real user has the write permission on the file */
f = open(“/tmp/X”, O_WRITE);
write_to_file(f);

}
else {

fprintf(stderr, “Permission denied!\n”);
}
…

open() only checks (indivisibly) the effective user.
there is no way here of making the calls to access() and open() execute indivisibly.

Exploit the window of TOCTTOU
There is a window between the access() check and open()
 In that window another program can create a link to another file

SSIN / SSE 20

/tmp/X is a regular
file from the real user

access()
succeeds

window

context switch

context switch

make
/tmp/X /etc/passwd

other program

open()
succeeds

write_to_file()
writes to /etc/passwd

Stop the exploit
In this case we cannot use synchronization, but the flaw is

due to the lack of applying the Principle of Least Privilege
 In order to write to a user file, we don’t need root privileges in a set_UID

program
• set_UID programs should use root privileges only to perform the tasks that

real users cannot
• the effective user id should become the real user all other tasks

SSIN / SSE 21

uid_t real_uid = getuid();
uid_t eff_uid = geteuid();

// for writing the real user file
seteuid(real_uid);
f = open (“/tmp/X”, O_WRITE); // checks the effective user permissions on the file
if (f != -1)

write_to_file(f);
else

fprintf(stderr, “Permission denied!\n”);

// for tasks where root privilegie is needed
seteuid(eff_uid);

Another race condition – dirty COW
 Linux introduced this vulnerability in 2007
 Discovered only in 2016

 Results from lack of indivisibility in write() on copy-on-write pages
• in this case write() performs 3 things: makes a copy of the mem page, change

the page table of the process to point to it, and write to the memory
• one example of this kind of page is a PRIVATE memory mapped file

SSIN / SSE 22

physical
memory

process
virtual
memory

memory
mapped
file

if
MAP_PRIVATE
copy-on-write

initial
mapping try to write

①

create and
copy

② effective
write

new
mapping

③
④

Exploit
There is a system call to get rid of the copy-on-write page
 It’s madvise() with a parameter MADV_DONTNEED

 The dirty page is freed, and the initial mapping is restored
• The previous writes are lost, but the initial mapping remains COW

What if
madvise() is called from another thread …

… at the same time as the write on the MAP_PRIVATE mapping

 It can happen that the restoration of the initial mapping is done
between steps ③ and ④ of previous diagram

 If the initial mapping is to a read only file (e.g., from another user or
even root) the process now writes to it

 Solution
 In recent kernels the code of write() is now indivisible making a single

critical section (are you running a recent kernel ? …)

SSIN / SSE 23

Object deserialization
Many languages, frameworks, or even libraries allow serial

(byte stream) representations of instantiated objects
 Java, Python, Ruby and Rails, PHP, .NET, ...

 Serialization is used to transfer data in object form or write it to a
persistent store

 Aka ‘marshalling’ or ‘pickling’

 Several Java and other technologies are layered over serialization
• RMI, JMX, …

 Deserialization of untrusted data can lead to exploits
 Knowing the serialized layout of objects or object trees allow for

serialized representation manipulation, possibly leading to
• DoS (exhaustion of resources, or ‘impossible’ objects)
• Data visualization
• Data falsification
• Execution of ‘gadget’ code

SSIN / SSE 24

Deserialization and validation in Java
Deserialization is done using readObject() of

ObjectInputStream

SSIN / SSE 25

public static <T> T load(Path p) throws IOException, ClassNotFoundException {
try (ObjectInputStream s = new ObjectInputStream(new InputStream(p))) {

return (T) (s.readObject());
}

}

public class Lottery implements Serializable {
private int ticket = 1;
SecureRandom draw = new SecureRandom();
public Lottery(int ticket) {

this.ticket = (int) (Math.abs(ticket % 20000) + 1); // some validation
}
public int getTicket() { return this.ticket; }
public int roll() {

this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
return this.ticket;

}
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {

in.defaultReadObject();
}

Constructor is not executed

Validating deserialized objects
 Deserialization builds new objects
 Does not invoke any constructor

• Bypasses any state validation

 Skips transient and static fields
• They will gain the language default value
• Could be different from your safe default value

 You should use the ObjectInputValidation interface and override
readObject()

SSIN / SSE 26

public final class Lottery implements Serializable, ObjectInputValidation {
private void readObject(ObjectInputStream in) throws IOException, ClassNotFoundException {

in.registerValidation(this, 5); // triggers validateObject() once the object is created
in.defaultReadObject();

}

public void validateObject() throws InvalidObjectException {
if (this.ticket > 20000 || this.ticket <= 0) {

// plus other checks
throw new InvalidObjectException("Not in range!");

}
}

Other perils
 Even when validating serialized objects, it’s possible to get

careful crafted objects for malicious purposes
 Deserialization always build objects first (possible exception later)

 In some circumstances they can execute code already present in the
classpath
• E.g., through an AnnotationInvocationHandler

 Joining carefully existent methods it’s possible to execute other code
(like a terminal with a shell)
• Those methods to achieve a certain goal, are not uncommon (called ‘gadgets’)

• E.g., the huge Apache Commons library

Mitigations
 Complete defense – do not deserialize objects (use other ways of transmitting data)

 If you must, only accept trusted objects
• They should be encrypted, signed, and verified before deserialization
• Lock down the sources of serialized data
• RMI servers should only contact trusted machines

SSIN / SSE 27

Demo
With a specially crafted serialized object it’s possible to run

arbitrary code (present in some library of the application)

There are tools to create these serialized objects
 See: https://github.com/frohoff/ysoserial

 And: https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet
APM@FEUP 28

public InvocationHandler getObject(final String command) throws Exception {
final String[] execArgs = new String[] { command };
// inert chain for setup
final Transformer transformerChain = new ChainedTransformer(new Transformer[]{ new ConstantTransformer(1) });
// real chain for after setup
final Transformer[] transformers = new Transformer[] {

new ConstantTransformer(Runtime.class),
new InvokerTransformer("getMethod", new Class[] {

String.class, Class[].class }, new Object[] {
"getRuntime", new Class[0] }),

new InvokerTransformer("invoke", new Class[] {
Object.class, Object[].class }, new Object[] {
null, new Object[0] }),

new InvokerTransformer("exec",
new Class[] { String.class }, execArgs),

new ConstantTransformer(1) };
final Map innerMap = new HashMap();
final Map lazyMap = LazyMap.decorate(innerMap, transformerChain);
final Map mapProxy = Gadgets.createMemoitizedProxy(lazyMap, Map.class);
final InvocationHandler handler = Gadgets.createMemoizedInvocationHandler(mapProxy);
Reflections.setFieldValue(transformerChain, "iTransformers", transformers); // arm with actual transformer chain
return handler;

}

Using Apache
Commons Collection
library

XXE – XML External Entity
XML is often used to transport data to a web app
 XML is mostly self explanatory, in its hierarchical data structures

 Example:

 To verify that an XML document is according to its intended format a
DTD can be included
• DTD means Document Type Definition and can be defined in the XML doc

APM@FEUP 29

<message>
<to> Jim </to>
<from> Janis </from>
<subject> Meeting </subject>
<body> Let’s meet on Friday! </body>

</message>

<?xml version=“1.0”?>
<!DOCTYPE message [
<!ELEMENT message (to, from, subject, body)>
<!ELEMENT to(#PCDATA) >
<!ELEMENT from (#PCDATA) >
<!ELEMENT subject (#PCDATA) >
<!ELEMENT body (#PCDATA) >

] >

#PCDATA is the data type, and in this
case, stands for Parsed Character Data,
which is string data

The DTD can be written in the first
part of an XML document or put on
a separate file, and included in the XML,
specifying a URI/URL

External DTDs and ENTITIES
In an XML document its possible to include an external DTD

It is also possible to define Entities
 Entities are like variables, that can be referenced elsewhere, and with a

value in the XML document or externally
• The general form of defining an entity is like:

APM@FEUP 30

<?xml version=“1.0”?>
<!DOCTYPE message SYSTEM “message.dtd”>
<message>

<to> Jim </to>
<from> Janis </from>
<subject> Meeting </subject>
<body> Let’s meet on Friday! </body>

</message>

In this case the actual DTD is in the
file “message.dtd”
Note the use of the SYSTEM keyword

<!ENTITY entity-name “entity value” >

Example:
<!ENTITY email “some@email.com” >
<!ENTITY author “John Doe &email;” >
<author> &author; </author>

Result for the author tag:
<author> “John Doe some@email.com” </author>

External ENTITIES
It is also possible to have entities in external files or URLs
 The SYSTEM keyword is also used in this case

When an app has an XML document as input
 It will try to interpret it, usually using a framework or library parser

• If it finds DOCTYPEs or ENTITYs with the SYSTEM keyword the parser will try to
get the external definitions

Possible vulnerability
 Not previously checking these external references (input not verified)

 A carefully crafted XML input can cause unexpected side effects (injection)

APM@FEUP 31

<!ENTITY entity-name SYSTEM “URI or URL” >

Example:
<!ENTITY author SYSTEM “http://example.com/entities.dtd” >
<author> &author; </author>

<author> John Doe some@email.com </author>

PHP Example

APM@FEUP 32

<?php
$xml = <<<XML
<?xml version=“1.0” encoding=“UTF-8”?>
<user>

<name>John Doe</name>
<email>some@email.com</email>

</user>
XML;

$ch = curl_init(“http://localhost/verify.php”);
curl_setopt($ch, CURLOPT_HEADER, false);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, $xml);
$data = curl_exec($ch);
if (curl_errno($ch)) {

print curl_error($ch);
}
else {

echo “Response:
” . $data;
}
curl_close($ch);
?>

<?php
libxml_disable_entity_loader(false);
$xm = file_get_contents(‘php://input’);
$dom = new DOMDocument();
$dom->loadXML($xm, LIBXML_NOENT | LIBXML_DTDLOAD);
$user = simplexml_import_dom($dom);
$name = $user->name;
$email = $user->email;
echo “<pre>User verified (name):
 $name</pre>”;
?>

verify.php (the service that receives the
XML document)

<?xml version …
<!DOCTYPE own [<!ELEMENT own ANY >
<!ENTITY own SYSTEM “file:///etc/passwd” >]>
<user>

<name>&own;</name>
…

Input crafted with an external Entity

Easy to prevent, but without external entities

send.php (sending an XML document
As input to another service (POST))

SSRF – Server-Side Request Forgery
It happens when a web app allows the user to make requests

to arbitrary URIs, in the server code
 Because they are on the server, they use the server account privileges

APM@FEUP 33

web app
intranet

resources

services

external
server

①

SSRF vulnerability
This vulnerability results from having client code or services

with the URL exposed, or accepting any kind of parameter
with a URL
 Not verifying that the URL is acceptable (which can be difficult)

The result of the request can be shown in the user browser
We say that we have a regular or in-band SSRF vulnerability

The request causes some effect, but the result is not directly
shown
We say we have a blind or out-of-band SSRF vulnerability

We can test if it works making the app request our own server …

There are tools to help find these types of vulnerabilities
 The Burp suite and its extension – Collaborator Everywhere

APM@FEUP 34

SSRF prevention
Application layer
 Sanitize and validate all client input data

 Create a whitelist of allowed URL schemas, ports, and destinations

 Do not send raw responses of requests to the browser

 Disable redirections

 Do not use deny lists or regular expressions (can be circumvented)

Network layer
 Segment your resources in separate networks

 Deny by default firewalls in intranet allowing only essential traffic

Biblio
• Preventing SSRF - http://seclab.nu/static/publications/sac21-prevent-ssrf.pdf
• A New Era of SSRF - https://www.blackhat.com/docs/us-17/thursday/us-17-

Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-in-Trending-Programming-
Languages.pdf

APM@FEUP 35

SSRF – A simple demo

APM@FEUP 36

<!--Create a static dropdown box-->
<form id="L" method="post">
<select name="Language">
<option value="http://localhost:8001/en.php">English</option>
<option value="http://localhost:8001/pt.php">Portuguese</option>

</select>
<button type="submit" class="button">Submit</button>

</form>

<?php
if (isset($_POST['Language'])) {
$url=$_POST['Language'];
$data=file_get_contents($url);
echo "Message:
".$data;

}
?>

A vulnerable server

URLs present in the
client code

The request which is done on the
server …

<!--Create a static dropdown box-->
<form id="L" method="post">

<select name="Language">
<option value="http://localhost:8001/en.php">English</option>
<option value="http://localhost:8001/pt.php">Portuguese</option>
</select>
<button type="submit" class="button">Submit</button>

</form>

The client side

Top secure coding practices (1)
Validate input. Validate input from all untrusted data sources

(including command line arguments, network interfaces,
environmental variables, and user-controlled files).

Heed compiler warnings. Use the highest warning level and
version of your compiler and eliminate warnings by modifying
code. Use static and dynamic analysis tools to detect and eliminate
additional security flaws. Activate security protection flags.

Architect and design for security policies. Create a software
architecture and design your software to implement and enforce
security policies (e.g., different privilege levels).

Keep it simple. Keep the design as simple and small as possible.

Default deny. Base access decisions on permission rather than
exclusion.

Adhere to the principle of least privilege. Every process should
execute with the least set of privileges necessary to complete the
job and in the shortest time.

SSIN / SSE 37

Top secure coding practices (2)
Sanitize data sent to other systems. Sanitize all data passed to other

subsystems (output sanitization). It can contain unintended information.

Practice defense in depth. Manage risk with multiple defensive
strategies. Verify everything with multiple rules and implementations.

Use effective quality assurance techniques. Good quality assurance
techniques like fuzz testing, penetration testing, and source code audits.

Adopt a secure coding standard. Develop and/or apply a secure coding
standard for your target development language and platform. Do not rely
in very recent or seldom used languages or frameworks.

Define security requirements. Identify and document security
requirements early in the development life cycle.

Model threats. Use threat modeling to anticipate the threats to which the
software will be subjected. Threat modeling involves identifying key
assets, decomposing the application, identifying and categorizing the
threats to each asset or component, rating the threats based on a risk
ranking, and then developing threat mitigation strategies that are
implemented in designs, code, and test cases.

SSIN / SSE 38

SEI Coding Standards
Collection of rules to follow when programming in a

designated language
 SEI has developed thorough standards for the main 3 languages (Java, C

and C++); also, Android and Perl
• Available at https://www.securecoding.cert.org/confluence/x/BgE

Also books (free download)

SSIN / SSE 39

2016 Edition
99 rules for a safe coding standard

2016 Edition
83 additional rules

More coding standards and guidelines

SSIN / SSE 40

Java coding standard
152 rules for safe coding

Java coding guidelines
with 75 additional recommendations

recommendations and
in-depth analysis for C and C++

