
Authentication
Security
Mechanism

PRINCIPLES
MECHANISM
AU THENTICATIO N FACTO RS
REMOTE AU THENTICATION

APM@FEU P

Entities and Identities

APM@FEUP 2

Entity or principal in a system

Any actor that needs a distinction
between different instances

Identities are unique representations
of an entity

Identity system implementation

Protecting access

➢In many organizations today

▪ Specialized protection of resources (files, databases, …), services and
APIs, applications, and application specific functionalities, is needed

▪ For that, many times, user (or entity) identity and access control is also
implemented as a set of independent services

APM@FEUP 3

IdM – Identity Management
(information about users)

IAM – Identity and Access
Management
(authentication, authorization,
consumes IdM information)

IAG – Identity and Access
Governance
(administration, logging, detection)

The PDP-PEP pattern

➢In operation, the protection system in an organization, has
usually the following architecture

APM@FEUP 4

A user ① accessing resources or applications (usually using a browser) goes to some web server or service ②.
The server can act as, or delegate, to a decisor of access (the PEP). The PEP queries the PDP ③ for access rules to
some protected resource or functionality. The PDP can authenticate the user and consult the corresponding access
policies. The information is on the PIP ④. The PAP application ⓪ allows an administrator to create, modify, delete
access rules (who has access to what, and how), and the user information relative to its identity and authentication
information.

PEP – Policy enforcement point
(application of access policies)

PDP – Policy decision point
(policies: who can access what and how, in
 what conditions)

PIP – Policy information persistence
(user and policy persistence in some custom
or standard database – like LDAP, Directory,
SAML, …)

PAP – Policy administration point
(app for protection administration)

Authentication Definition

➢Can be defined as the “binding of an identity to an entity”

▪ An identity is a representation or ‘name’ of some entity

▪ entities in computer systems (also called principals) can be users (of an
operating system, or application), can be computer nodes on a network,
or even can be programs (applications) executing on the system

➢ Authentication is a fundamental security building block

▪ Is the basis of access control and accountability, and a trusted proof
mechanism for an identity

➢ Is distinct from message authentication

▪ message authentication has to do with the integrity of messages sent
between two parties

▪ user authentication establishes (or allows trust about) the user identity

APM@FEUP 5

Process

➢ For authentication, some steps are needed

▪ 1. Registration
• The information about the entities to be authenticated should be collected

and stored first

• In this information there should be an identifier representing the identity of
the entity

• Other information (location, function, contact, …)

• Complementary information associated with the entity (passphrase,
password, public key, biometrics, …)

• The registration process should be done in a way to prevent imposture

▪ 2. Identification
• System interactions (e.g., login), allowing the user to specify his identifier

▪ 3. Verification
• The system (an inner and protected component of the OS) verifies the

previous claim

• Asks to supply, in some form, some of the recorded complementary
information

APM@FEUP 6

Elements of the Authentication Mechanism

➢ The Authentication mechanism has several components
▪ A set A of possible information for proving the identity (authentication

information)
• The #A should be very large
• An entity have an association to an element a  A (by choosing or assignment)

▪ A set C of complementary information, which is stored, and used for
validating the elements of A
• Usually, each element of C (c  C) is derived from an element of A

▪ A set of one or more functions F (complementation functions) used to
generate a c from a
• That is, a f  F is a function of A → C (f(a) → c)
• It can be a cryptographic encryption, or more commonly, a cryptographic hash

▪ One or more authentication functions L to verify identity
• A function l  L is a function of AC → {true, false} (l(a, c) → true || false)

▪ A set of selection functions S, allowing an entity to change its
authentication information (a  A)
• A function s  S should allow an entity to choose another a, or to get a new

association to another a; in the process the value c = f(a) is stored

APM@FEUP 7

Local authentication mechanism

APM@FEUP 8

Large set of
authentication characteristics

A one a  A

user or
entity

identity
characteristics

database for
authentication data

Large set of
derived values from

the authentication characteristic
(complementary information)

C one c  C

c = f(a)
derivation function

read c

get a

login function

l(a, c) → true or false

chooses an a
or is assigned

Correspondence
using an identifier

✓



s()
selection function

user id

Factors of User Authentication

➢ The verification process uses one or more of usually four
characteristics’ types (factors) associated with users

▪ Something the user knows
• Can be passphrases, passwords, PINs, etc.

▪ Something the user possesses physically
• A key, a token, a smartcard, a smartphone, capable of interact with the system

▪ Something the user is (distinctive)
• Also called static biometrics

• fingerprint, face, retina, iris, etc.

▪ Something the user does (distinctively)
• Also called dynamic biometrics

• voice, typing, signature (handwritten), etc.

➢ The four factors can be used alone or combined

▪ 2FA (two factor authentication, for two different characteristics’ types)

▪ MFA (multi-factor authentication, usually for more than two)

➢ All have issues

APM@FEUP 9

Password Authentication

➢ A password should be a unique string known by the entity

➢ Still the most widely used authentication method
▪ User provides username/login id

▪ System asks for password (some a  A)

▪ System compares password with that previously saved for the supplied
identifier (reading c, associated with id, and applying f(a))
• This operation is l(a, c)

➢ After positive authentication
▪ Verification that the authenticated user is authorized to access the

system
• Some restriction (policies) can exist on access hours and places (terminals),

password ageing, …

▪ Determines the authenticated user privileges

▪ Uses the user identity for access control of system resources
• Create processes, execute programs, access files, query databases, …

APM@FEUP 10

Example: the Authentication Elements

➢ A user authenticates by an eight-character password, stored
in a database table, indexed by a user id

▪ In this case the set A is composed by all possible strings of 8 characters,
usually restricted to printable Latin characters (say about 96 different
ones)
• There are 968 possibilities (= 7.2 x 1015), but if it is allowed a user to choose it,

they are not equiprobable

• A user password will be one of them (a  A)

▪ In this case C = A

▪ Also, f() is the identity function (I()), that is, f(a) = a

▪ The function l(), (login) just verifies if the supplied a is equal to the
stored one, indexed by the supplied user id

▪ A function s() should allow store a new a in the database table, indexed
by the initially supplied user id (in the login process, and after
authentication)

APM@FEUP 11

Password Vulnerabilities and Countermeasures

➢ Vulnerabilities
• offline dictionary attacks

• specific account attack (for a specific user, from his characteristics …)

• popular passwords attack (against a wide range of users)

• workstation hijacking

• exploiting user mistakes and social engineering

• exploiting multiple password use

• electronic monitoring

➢Countermeasures
• protect password file

• intrusion detection (hour, place, access pattern, errors, …)

• account lockout mechanism

• password policies

• automatic logout

• encrypted communications

• training and enforcement of policies

APM@FEUP 12

Local Linux Password System

APM@FEUP 13

hash code – passwords stored
as a cryptographic hash
calculated value (nowadays some
variation of SHA-512)

slow hash – cryptographic hash
applied many times (e.g., 1000 or
5000 times)

salt – random value or string with
some size characteristics

files scattered in the system,
with protected access
(passwd, shadow, …)

What is a Salt ?

➢ Random value to be combined with a password

➢ Prevents duplicate passwords from being visible in the
password files

▪ they produce different hashes with different salt values

➢ Increase the difficulty of offline dictionary attacks

▪ If the salt is not known to the attacker

▪ The attacker tries to find a password with the same hash as the one
stored in the password file

➢ Not possible to know if the user has the same password in
several different systems

▪ The salt modifies the stored hash value that corresponds to the
password

APM@FEUP 14

Modern (Dynamic) Salt Use

➢Normally salts are randomly generated with a fixed size and
algorithm, and pre- or post-pended to the plain password

➢More recently the size (10 to 32 characters) and complexity
depend on a size and complexity evaluation of the password

▪ The salt is then added according to a placement algorithm

APM@FEUP 15

. . .
salt (size and complexity modulated by password)

H2()

H1()

placement hash


LS bit of each byte

placement bit string combine

final salted password hash

slow
Hash function

If a bit = 1 – place a byte of salt in that position
 bit = 0 – no placement
 bits = 00 – place two bytes of salt

Example:
P: password
S: %@&03U+
Placement: 10101010
SP: p%as@sw&or0d3U+

Plain password

Anatomy of a Local Password Attack

➢ Goal

▪ Find an a  A such that some f(a) = c, associated with an identity

▪ c and f() must be known to the attacker

➢ Direct attack

▪ Find f() by researching the operating system or application

▪ Find c, getting access to file or database where is stored

➢ Indirect approach

▪ Make system trying l(a), for some entity, and see the result (true or
false)
• Many systems have limitations on the number of failed trials if l(a) is tried on

login

APM@FEUP 16

Password Cracking Attacks

APM@FEUP 17

Dictionary attacks

• Develop a large dictionary of
possible passwords and try
each against the password
file

• Each password must be
hashed using each salt value
and then compared to
stored hash values

Rainbow table
attacks

• Pre-compute tables of hash
values for all salts

• A mammoth table of hash
values

• Can be countered by using a
sufficiently large salt value
and a sufficiently large hash
length

Password crackers
exploit the fact that
people choose easily
guessable passwords

• Shorter password lengths
are also easier to crack

• Potential passwords are
generated with common
variations

John the Ripper

• Open-source password
cracker first developed in in
1996

• Uses a combination of brute-
force and dictionary
techniques

• Generates variations of
dictionary passwords

Dictionary and Rainbow Attacks
➢ Dictionary attacks
▪ try each word and obvious variants in a large dictionary against hash in

password file
• facilitated if the salt is also known
• need to know the hashing algorithm or applied variation
• Can take a large amount of time

➢ Rainbow table attack
▪ Increases speed of attack

▪ Uses a large dictionary of possible passwords

▪ for each password in dictionary
• precompute a table of hash values for all possible salts
• results in a huge table of hash values (generated from a dictionary and small

hashes) of more than 10 billion entries was able to crack 99.9% of small
alphanumeric passwords in 14 s, some years ago …

• since then, salts and hashes increased in size, and password policies were
made more difficult

• A big enough rainbow table can take months (or even years) to generate

APM@FEUP 18

Another Case Study

➢ Some years ago (2013) 25000 passwords picked by students
at a university, with a complex password policy, were
analyzed and tried to crack

➢ over 10% recovered after 1010 guesses (dictionary and
variations)

APM@FEUP 19

Mazurek, M., et al.
“Measuring Password Guessability
 for an Entire University.”
Proceedings of the 2013 ACM
SIGSAC Conference on Computer &
Communications Security,
November 2013

Using Better Passwords

➢ Care must be used when picking or assigning passwords

➢ The goal is to eliminate guessable passwords

▪ Preferably still easy to remember by users

▪ Taking note of passwords can be OK if the user takes some precautions

• Using a password storage application (with a master password for encryption)

➢ Techniques for password picking

▪ User education

• Making the user aware of the perils of guessable passwords

▪ Computer-generated passwords

• Completely random can be very difficult to enter and remember

• NIST FIPS 181 defines an algorithm to generate pronounceable concatenation of syllables (needs to
increase the size for same #A)

▪ Reactive password checking

• Periodically checks weaknesses in password guessing (running its own password cracker)

▪ Proactive password checking (at the time of selection) or Complex Password Policy

• Enforcement of password policy rules (rejected at the moment, if fails checking)

• use a Bloom filter (technique to quickly check if a candidate is in a large dictionary) (OPUS checker)

APM@FEUP 20

Password Anderson Formula

➢ Anderson formula measures the probability of an attacker
guessing a password in a certain interval of time

▪ We need to know the time interval (T)

▪ In an offline testing of the guess, we also need to know the number of
tests we are able to perform per time unit (G)

▪ And we need to know the possible number of passwords under
consideration, that should be equiprobable (N)

➢ With these assumptions the probability (P) is calculated as:

➢ Example:

APM@FEUP 21

P ≥
𝑇𝐺

𝑁

Let passwords be composed of characters from a 65 alphabet, and suppose we
can test 106 passwords per second. How long should a password be (L characters)
to guarantee a probability at most 1/1000 over 1 year of testing?

We have 𝑁 ≥
𝑇𝐺

𝑃
 =

365×24×3600×106

0.001
 = 31.536 x 1015, N = 65L, L ≥ 10

Token Based Authentication
➢ Object possession to use as authentication
▪ Memory objects

▪ Smartcards

➢ Memory objects store but not process data
▪ Used after reading for access (e.g., hotel rooms)

▪ The access hardware can verify a PIN (or password) also stored in the object

▪ Have some drawbacks
• Can be easy to duplicate
• Needs special readers
• A loss can be problematic
• User dissatisfaction

➢ Smartcards
▪ Has memory, processor, and I/O
• Can generate a dynamic password (e.g., based on date/time or other parameters)
• Can use challenge / response
• Can use a PIN as second factor

➢ One-time passwords (OTP) and devices

APM@FEUP 22

Smartcard Operation

APM@FEUP 23

Electronic Identity (eID) System

➢ Used in passports, citizen cards, drivers license

▪ provides a national electronic identity (eID)
• Its implementation is based on wired or wireless smartcards

➢ Can provide a stronger proof of identity and signature

➢ Usual data stored in the card

▪ Personal data (name, address, birthplace, birthdate, …)

▪ Unique document number

▪ Card access codes (PINs)

▪Machine Readable Zone (public info)

▪ Private Key

▪ Public Key and Certificate(s)

▪ Can use challenge / response for proving identity

▪ Used also in official digital signatures

APM@FEUP 24

Functions and Data for eID Cards

APM@FEUP 25

CAN – card access number
MRZ – machine readable
 zone
PACE – password
 authenticated connection
 establishment
PIN – personal
 identification number

PACE

APM@FEUP 26

Ensures that the
contactless RF chip in
the eID card cannot be
read without explicit
access control

For online
applications, access is
established by the user
entering the 6-digit
PIN (which should only
be known to the
holder of the card)

For offline
applications, either the
MRZ printed on the
back of the card, or the
six-digit card access
number (CAN) printed
on the front is used

User Authentication with eID

APM@FEUP 27

One Time Passwords (OTP)

➢ Passwords that are used only once (age policy)
▪The entity and the authenticator must have a means of

calculating the next same password

▪ For a human, usually a device in his possession is used, or a
software generator
• Needs an initial synchronization with the authenticator

➢ Several methods have been proposed and implemented
▪S/Key – Uses a series of hashes, from an initial seed K
• To attack the next password one hash function h() should be inverted
• Only brute-force attacks are known, infeasible if h() has a large result
• OPIE is an implementation device of S/Key

▪HOTP – HMAC based OTP Algorithm
• Uses a shared key K, and an 8-byte counter c, in a standard described in RFC 4226
• The counter is incremented each time a new password is generated

▪TOTP – Time based OTP Algorithm
• Defines an initial counter time t0, a time step x, and uses a time variable t
• Described as a standard in RFC 6238
• Time t must be synchronized (within a tolerance), and there is a resynchronization

mechanism defined

APM@FEUP 28

Biometric Authentication

➢ Based on the user static or dynamic physical characteristics

▪ Usual characteristics used in authentication systems
• Face detection and characterization

• Fingerprint acquisition and processing

• Hand geometry and lines

• Retina pattern acquisition and characterization

• Iris patterns

• Voice characterization pronouncing a known text (dynamic)

• Handwritten signature (dynamic)

APM@FEUP 29

Operation of a Biometric System

APM@FEUP 30

Verification verifies if a biometric
feature corresponds to a stored
template associated with an Id.
(e.g., a PIN).

Identification is done with
biometric info but no Id’s.
The system compares with a
stored template and if founds
one match it supplies the
corresponding Id.

Enrollment is the registration.
Biometric features are extracted
and stored and associated with
an Id.

Biometric Accuracy (1)

➢ The system generates a matching score

▪ The score quantifies similarity between the input and the closest stored
template

➢ Concerns

▪ Sensor noise produces almost always some deviations

▪ Detection accuracy (acquisition, position, processing, ...)

➢ Problems with false matches and false non-matches

APM@FEUP 31

Biometric Accuracy (2)

➢ Choose a threshold minimizing false positives and negatives

▪ Needs large experimentations for combinations of sensors and
processing / extracting algorithms

APM@FEUP 32

Two-factor and Multi-factor

APM@FEUP 33

It’s very common a
second factor to be
based on the possession
of another communication
channel (side-channel)
with another device
(smartphone)

Basic Remote User Authentication

➢ Authentication over a network requires more complexity

▪ Should protect against eavesdropping and replay

➢ The main process should use a challenge / response protocol

▪ User sends his identifier (represents the user identity)

▪ Authenticator responds with a random message r (also known as a
nonce)

▪ User computes a value represented as f(r, h(P))
• h() is an agreed upon cryptographic hash function

• f() is another agreed upon function that can combine the value r and the hash
h(P), where P is the user password

▪ User sends the computed value to the host

▪ The host computes the same value using r and the stored hash of the
password (h(P))

▪ The result is positive if there is a match (user authenticated)

APM@FEUP 34

Remote Password Protocol

APM@FEUP 35

U – user identifier
r – nonce (random value (unique))
f(), h() – identifiers of the functions or
 implicitly agreed upon by both
 parties

f(r’, h(P’)) – computed by client with the
 received r (r’  r) and the user supplied
 password (P’)

f(r, h(P)) – computed by host using the
 transmitted value r and the stored
 hash of the user U password

if previous values are equal than yes
 else no

based on the old CHAP* standard (RFC 1994, from 1996)
where h(P(U)) is the stored secret, and f() is a hash function
(initially MD5)
* Challenge Handshake Authentication Protocol

CHAP can be replaced by more secure protocols like SCRAM (Salted Challenge Response Authentication Mechanism), RFC 5802, 7677, 7804
SCRAM stores on the server a salt, and a hash of a HMAC, using the salted password as a key, depending on the user U. It allows also the host
verification by the client

Protocols for Other Authentication Types

APM@FEUP 36

W’ – passcode from password
h(W(U)) – stored passcode hash
 derived from the password

BT’ – biometric template derived
 from the acquired biometrics B’
 at the client side
D’ – identifier of the biometric
 acquisition device
E() is an identified or agreed
 encryption function (E-1() – decryption)
BT(U) is the stored biometric template
 belonging to user U

x – random sequence of characters
 or words
BS’(x’) – biometric signal generated
 from vocalization, typing or writing
 the sequence x’
B’ – biometric characteristics extracted
 from the signal BS’(x’)
B(U) – stored biometric characteristics
 of user U

Authentication Security Issues (1)

➢Client attacks
▪ attacker attempts to achieve user authentication without access to

remote authenticator
• Masquerade as a legitimate user (guess the password or try many)

▪ Countermeasures: strong passwords; limit on the number of wrong
attempts

➢ Host attacks
▪ Attackers try to get the stored password file in the host

▪ Countermeasures: password hashing (slow hash); increased protection
on password database

➢ Eavesdropping
▪ attacker attempts to observe the user and transmissions: find written

passwords; keylogging; network interception

▪ Countermeasures: keep password secret and user memorized;
multifactor authentication; quick revocation of compromised passwords

APM@FEUP 37

Authentication Security Issues (2)

➢ Replay

▪ Attacker tries to repeat a previously captured user response

▪ Countermeasures: use of challenge / response; generating 1-time
passwords

➢ Trojan horse

▪ an application or device masquerades as an authentic application or
device

▪ Countermeasures: authentication of clients should occur within trusted
security environments

➢ Denial of service

▪ Attacker attempts to disable the authentication service (e.g., by
flooding)

▪ Countermeasures: multifactor authentication with a fast verifiable
token

APM@FEUP 38

	Slide 1: Authentication Security Mechanism
	Slide 2: Entities and Identities
	Slide 3: Protecting access
	Slide 4: The PDP-PEP pattern
	Slide 5: Authentication Definition
	Slide 6: Process
	Slide 7: Elements of the Authentication Mechanism
	Slide 8: Local authentication mechanism
	Slide 9: Factors of User Authentication
	Slide 10: Password Authentication
	Slide 11: Example: the Authentication Elements
	Slide 12: Password Vulnerabilities and Countermeasures
	Slide 13: Local Linux Password System
	Slide 14: What is a Salt ?
	Slide 15: Modern (Dynamic) Salt Use
	Slide 16: Anatomy of a Local Password Attack
	Slide 17: Password Cracking Attacks
	Slide 18: Dictionary and Rainbow Attacks
	Slide 19: Another Case Study
	Slide 20: Using Better Passwords
	Slide 21: Password Anderson Formula
	Slide 22: Token Based Authentication
	Slide 23: Smartcard Operation
	Slide 24: Electronic Identity (eID) System
	Slide 25: Functions and Data for eID Cards
	Slide 26: PACE
	Slide 27: User Authentication with eID
	Slide 28: One Time Passwords (OTP)
	Slide 29: Biometric Authentication
	Slide 30: Operation of a Biometric System
	Slide 31: Biometric Accuracy (1)
	Slide 32: Biometric Accuracy (2)
	Slide 33: Two-factor and Multi-factor
	Slide 34: Basic Remote User Authentication
	Slide 35: Remote Password Protocol
	Slide 36: Protocols for Other Authentication Types
	Slide 37: Authentication Security Issues (1)
	Slide 38: Authentication Security Issues (2)

