Authentication
Security
Mechanism

PRINCIPLES

MECHANISM
AUTHENTICATION FACTORS
REMOTE AUTHENTICATION

APM@FEUP

Entities and Identities

Entity or principal in a system PRI

Any actor that needs a distinction
between different instances

Identities are unique representations
ofanentity P_____.

correspond of Identifiers
p Identities ._]_:_ _____ <

Entities ,il_: ------- 1

consist Attributes /

‘

Identity system implementation

entity representation
— Id
H . p— i Full name
prmm— indexes - -
—— = | Function

A = == Office

® hd hd Email

identifier Phone

entity (username, id(number), o .
(user, other, ...) another unique characteristic) other entity information collected by a
\ registration
procedure

APM@FEUP 2

Protecting access

»In many organizations today

= Specialized protection of resources (files, databases, ...), services and
APIs, applications, and application specific functionalities, is needed

= For that, many times, user (or entity) identity and access control is also
implemented as a set of independent services

. : Id [% Identity & Access Aﬂ]] Identity & Access
IdM — Identity Management & anagement Management By Governance
(information about users) =
) . z:’ap’e‘::‘:if‘ password = Authentication (2FA) = Role catalog, lifecycle
IAM - Identity and Access $
Management u Delegated administration ® Single sign-on (SSO) ® Access certifications
(authentication, authorization, — — - ot
. . - 'eb proxy gateway egregation of duties
consumes IdM information) Rahpprovals & Workflows
S o ® Consent/ policy management ® Reporting
IAG - Identity and Access
Governance
(administration, logging, detection))
u |dentity store = Session data
@ = Attribute store ® |dentity synchronization
m Credential store u Identity transformation

Directory Services
u Configuration data

APM@FEUP 3

The PDP-PEP pattern

»>In operation, the protection system in an organization, has

usually the following architecture

()
PAP;!} P
© ADMIN
oSwoes| @ | PEP 4 o ¥
@ > i

&-) Site 1 Website 1| 3 P%P

Person Site 2 5| PEP P | Access Rules

| L ¥ o

Website 2
PIP =

PEP — Policy enforcement point
(application of access policies)

PDP — Policy decision point
(policies: who can access what and how, in
what conditions)

PIP — Policy information persistence

(user and policy persistence in some custom
or standard database — like LDAP, Directory,
SAML, ...)

PAP — Policy administration point
(app for protection administration)

A user (@ accessing resources or applications (usually using a browser) goes to some web server or service @.
The server can act as, or delegate, to a decisor of access (the PEP). The PEP queries the PDP ® for access rules to

some protected resource or functionality. The PDP can authentica

te the user and consult the corresponding access

policies. The information is on the PIP ®. The PAP application (© allows an administrator to create, modify, delete
access rules (who has access to what, and how), and the user information relative to its identity and authentication

information.

APM@FEUP

Authentication Definition

»Can be defined as the “binding of an identity to an entity”
= Anidentity is a representation or ‘name’ of some entity

= entities in computer systems (also called principals) can be users (of an
operating system, or application), can be computer nodes on a network,
or even can be programs (applications) executing on the system

» Authentication is a fundamental security building block

= Is the basis of access control and accountability, and a trusted proof
mechanism for an identity

> Is distinct from message authentication

= message authentication has to do with the integrity of messages sent
between two parties

= user authentication establishes (or allows trust about) the user identity

APM@FEUP 5

Process

» For authentication, some steps are needed

* 1. Registration

* The information about the entities to be authenticated should be collected
and stored first

* In this information there should be an identifier representing the identity of
the entity

* Other information (location, function, contact, ...)

* Complementary information associated with the entity (passphrase,
password, public key, biometrics, ...)

* The registration process should be done in a way to prevent imposture
= 2, |dentification
* System interactions (e.g., login), allowing the user to specify his identifier

= 3. Verification

* The system (an inner and protected component of the OS) verifies the
previous claim

* Asks to supply, in some form, some of the recorded complementary
information

APM@FEUP 6

Elements of the Authentication Mechanism

» The Authentication mechanism has several components

= A set A of possible information for proving the identity (authentication
information)
* The #A should be very large
* An entity have an association to an element a € A (by choosing or assignment)

= A set C of complementary information, which is stored, and used for
validating the elements of A
* Usually, each element of C (c € C) is derived from an element of A

= A set of one or more functions F (complementation functions) used to
generate a c from a
* Thatis, af € Fis a function of A— C (f(a) > ¢)

* It can be a cryptographic encryption, or more commonly, a cryptographic hash

= One or more authentication functions L to verify identity
» Afunction | € L is a function of AxC — {true, false} (I(a, c) —> true || false)

= A set of selection functions S, allowing an entity to change its
authentication information (a € A)

* Afunction s € S should allow an entity to choose another a, or to get a new
association to another a; in the process the value c = f(a) is stored

APM@FEUP 7

Local authentication mechanism

user or
entity

selection function
s() \

choosesana
oris assigned

Qr

Large set of
authentication characteristics

identity
characteristics
oneacA geta
login function
user id
derivation function Correspondence ‘/
Large set of c= f(a) using an identifier a4 c X
derived values from
the authentication characteristic
(complementary information) a C) —> true or false
oneceC? n
database for
authentication data
APM@FEUP 8

Factors of User Authentication

» The verification process uses one or more of usually four
characteristics’ types (factors) associated with users

= Something the user knows
* Can be passphrases, passwords, PINs, etc.

= Something the user possesses physically
* A key, a token, a smartcard, a smartphone, capable of interact with the system

= Something the user is (distinctive)
* Also called static biometrics
* fingerprint, face, retina, iris, etc.
= Something the user does (distinctively)
* Also called dynamic biometrics
* voice, typing, signature (handwritten), etc.
» The four factors can be used alone or combined
= 2FA (two factor authentication, for two different characteristics’ types)
= MFA (multi-factor authentication, usually for more than two)

> All have issues

APM@FEUP 9

Password Authentication

» A password should be a unique string known by the entity

» Still the most widely used authentication method
= User provides username/login id
» System asks for password (some a € A)

= System compares password with that previously saved for the supplied
identifier (reading c, associated with id, and applying f(a))
* This operation is I(a, c)

> After positive authentication

= Verification that the authenticated user is authorized to access the
system

* Some restriction (policies) can exist on access hours and places (terminals),
password ageing, ...

» Determines the authenticated user privileges

= Uses the user identity for access control of system resources
* Create processes, execute programs, access files, query databases, ...

APM@FEUP 10

Example: the Authentication Elements

» A user authenticates by an eight-character password, stored
in a database table, indexed by a userid
* In this case the set A is composed by all possible strings of 8 characters,

usually restricted to printable Latin characters (say about g6 different
ones)

* There are 968 possibilities (= 7.2 x 10%5), but if it is allowed a user to choose it,
they are not equiprobable

* A user password will be one of them (a € A)
= InthiscaseC=A
= Also, f() is the identity function (I()), that is, f(a) = a

= The function l(), (login) just verifies if the supplied a is equal to the
stored one, indexed by the supplied user id

= A function s() should allow store a new a in the database table, indexed
by the initially supplied user id (in the login process, and after
authentication)

APM@FEUP 11

Password Vulnerabilities and Countermeasures

» Vulnerabilities

« offline dictionary attacks

* specific account attack (for a specific user, from his characteristics ...)
* popular passwords attack (against a wide range of users)

* workstation hijacking

* exploiting user mistakes and social engineering

* exploiting multiple password use

* electronic monitoring

»Countermeasures
* protect password file
* intrusion detection (hour, place, access pattern, errors, ...)
* account lockout mechanism
* password policies
 automatic logout
* encrypted communications
* training and enforcement of policies

APM@FEUP 12

Local Linux Password System

hash code — passwords stored

as a cryptographic hash
calculated value (nowadays some
variation of SHA-512)

slow hash — cryptographic hash
applied many times (e.g., 1000 or
5000 times)

7

w

SSWOH
Password file

User ID_Salt Hash code
.

Slow hash Load
function .

(a) Loading a new password

Password file
User 1d User ID__Salt_Hash code

What is a Salt ?

» Random value to be combined with a password
> Prevents duplicate passwords from being visible in the
password files

» they produce different hashes with different salt values

» Increase the difficulty of offline dictionary attacks
= If the salt is not known to the attacker

» The attacker tries to find a password with the same hash as the one
stored in the password file

salt — random value or string with sat
some size characteristics o 1T — > Not possible to know if the user has the same password in
— several different systems
files scattered in the system, .ps
with protected access d » The salt modifies the stored hash value that corresponds to the
(passwd, shadow, ...) |Lnﬂi2m password
Hashed password .
Compare
(b) Verifying a password
APM@FEUP 13 APM@FEUP 14

Modern (Dynamic) Salt Use Anatomy of a Local Password Attack

» Goal

* Find an a € A such that some f(a) = ¢, associated with an identity

»Normally salts are randomly generated with a fixed size and
algorithm, and pre- or post-pended to the plain password

= ¢ and f() must be known to the attacker

> Direct attack

* Find f() by researching the operating system or application

»More recently the size (10 to 32 characters) and complexity
depend on a size and complexity evaluation of the password

= The salt is then added according to a placement algorithm

| Plain password |————{TTTIT10 ... (IO

salt (size and complexity modulated by password)

* Find ¢, getting access to file or database where is stored

» Indirect approach
Example: . .
P past)W0rd = Make system trying I(a), for some entity, and see the result (true or
' false)
S: %@&o03U+ . e e . L L
LSbitof each byte Placement: 10101010 . :Vla!'ly systems have limitations on the number of failed trials if I(a) is tried on
SP: p%as@sw&orod3U+ ogin
placement bit string combine
If a bit =1 —place a byte of salt in that position
bit =0 —no placement slow
bits = 0o — place two bytes of salt Hash function
APM@FEUP | final salted password hash | 15 APM@FEUP 16

Password Cracking Attacks

APM@FEUP 17

Dictionary and Rainbow Attacks

» Dictionary attacks

= try each word and obvious variants in a large dictionary against hash in
password file

* facilitated if the salt is also known
* need to know the hashing algorithm or applied variation
* Can take a large amount of time

» Rainbow table attack
* Increases speed of attack
= Uses a large dictionary of possible passwords

= for each password in dictionary
* precompute a table of hash values for all possible salts

* results in a huge table of hash values (generated from a dictionary and small
hashes) of more than 10 billion entries was able to crack 99.9% of small
alphanumeric passwords in 14 s, some years ago ...

* since then, salts and hashes increased in size, and password policies were
made more difficult

* A big enough rainbow table can take months (or even years) to generate

APM@FEUP 18

Another Case Study

» Some years ago (2013) 25000 passwords picked by students
at a university, with a complex password policy, were
analyzed and tried to crack

» over 10% recovered after 102°guesses (dictionary and
variations)

50%

Mazurek, M., et al. 40%
“Measuring Password Guessability

for an Entire University.” -
Proceedings of the 2013 ACM g 30%
SIGSAC Conference on Computer &
Communications Security,
November 2013

Percent gu

10%

1

10 107 10'° 1013

Number of guesses

APM@FEUP 9

Using Better Passwords

» Care must be used when picking or assigning passwords

> The goal is to eliminate guessable passwords
= Preferably still easy to remember by users

= Taking note of passwords can be OK if the user takes some precautions
* Using a password storage application (with a master password for encryption)

» Techniques for password picking

= User education
* Making the user aware of the perils of guessable passwords

= Computer-generated passwords
* Completely random can be very difficult to enter and remember

* NIST FIPS 181 defines an algorithm to generate pronounceable concatenation of syllables (needs to
increase the size for same #A)

= Reactive password checking
* Periodically checks weaknesses in password guessing (running its own password cracker)

= Proactive password checking (at the time of selection) or Complex Password Policy
* Enforcement of password policy rules (rejected at the moment, if fails checking)
* use a Bloom filter (technique to quickly check if a candidate is in a large dictionary) (OPUS checker)

APM@FEUP 20

Password Anderson Formula

» Anderson formula measures the probability of an attacker
guessing a password in a certain interval of time

= We need to know the time interval (T)

* In an offline testing of the guess, we also need to know the number of
tests we are able to perform per time unit (G)

= And we need to know the possible number of passwords under
consideration, that should be equiprobable (N)

» With these assumptions the probability (P) is calculated as:

P>
N

» Example:
Let passwords be composed of characters from a 65 alphabet, and suppose we
can test 10° passwords per second. How long should a password be (L characters)
to guarantee a probability at most 1/1000 over 1 year of testing?

TG _ 365x24x3600x10°

— = - L
We have N > > 5001 =31.536 x10%5, N=65" L>10

APM@FEUP 21

Token Based Authentication

» Object possession to use as authentication
= Memory objects
* Smartcards

» Memory objects store but not process data
= Used after reading for access (e.g., hotel rooms)
= The access hardware can verify a PIN (or password) also stored in the object

= Have some drawbacks
* Can be easy to duplicate
* Needs special readers
* Aloss can be problematic
* User dissatisfaction

> Smartcards

= Has memory, processor, and /O
* Can generate a dynamic password (e.g., based on date/time or other parameters)
* Can use challenge / response
* Can use a PIN as second factor

» One-time passwords (OTP) and devices

APM@FEUP 22

Smartcard Operation

Smartcard Reader

N2

Smartcard activation phase |

Smartcard

ATR

protocol negotiation PTS

answer PTS

| Applet interaction phase |

command APDU
< first: Select AID >
response APDU

ATR — Answer to reset

PTS — protocol type selection
APDU - application protocol data unit

APM@FEUP 23

Electronic Identity (elD) System

» Used in passports, citizen cards, drivers license
= provides a national electronic identity (elD)
* Its implementation is based on wired or wireless smartcards

» Can provide a stronger proof of identity and signature

» Usual data stored in the card
» Personal data (name, address, birthplace, birthdate, ...)
» Unique document number
= Card access codes (PINs)
= Machine Readable Zone (public info)
* Private Key
» Public Key and Certificate(s)
* Can use challenge / response for proving identity
» Used also in official digital signatures

APM@FEUP 24

Functions and Data for elD Cards

CAN - card access number
MRZ - machine readable

zone
PACE - password

authenticated connection

establishment
PIN — personal

identification number

PACE

Function Purpose Data Uses
P Password
. Offline biometric
. Face image; two | . .
Authorized fin rint identity
ePass offline inspection TRecIp verification
CAN or MRZ | images
(mandatory) systems read the = reserved for
(optional), MRZ
data government
data
access
Online
applications read Family anq given | . reaton
the data or acess elD PIN names; artistic i
. age verification;
functions as name and ;
. community ID
. authorized doctoral degree: e
eID (activation - verification;
. Offline date and place of :
optional . . oo restricted
inspection birth; address o R
systems read the and community togniteron
Y CAN or MRZ X S (pseudonym);
data and update ID; expiration revocation query
the address and date
community ID
A certification
hority install,
aut (?rlty installs oID PIN
the signature Electronic
eSign (certificate | certificate online Signature key; i omat
optional Citizens make CAN X.509 certificate | S1EMAMIe
; creation
electronic
signature with
eSign PIN
25

APM@FEUP

PACE

A |
For offline
| applications, either the
A . p MRZ printed on the
oronliné back of the card, or the
] applications, access is six-digit card access

established by the user number (CAN) printed

entering the 6-digit on the front is used
PIN (which should only

be known to the
holder of the card)

Ensures that the
contactless RF chip in
the elD card cannot be
read without explicit
access control

APM@FEUP 26

User Authentication with elD

6. User enters PIN

1. User requests service '
(e.g., via Web browser)¥

APM@FEUP

Host/application
server

27

One Time Passwords (OTP)

> Passwords that are used only once (age policy)

* The entity and the authenticator must have a means of
calculating the next same password

* For a human, usually a device in his possession is used, or a
software generator
* Needs aninitial synchronization with the authenticator

» Several methods have been proposed and implemented

= S/Key - Uses a series of hashes, from an initial seed K
* To attack the next password one hash function h() should be inverted
* Only brute-force attacks are known, infeasible if h() has a large result
* OPIE is an implementation device of S/Key

* HOTP - HMAC based OTP Algorithm

* Uses a shared key K, and an 8-byte counter ¢, in a standard described in RFC 4226
* The counter is incremented each time a new password is generated

* TOTP —Time based OTP Algorithm
* Defines an initial counter time t,, a time step x, and uses a time variable t
* Described as a standard in RFC 6238

* Time t must be synchronized (within a tolerance), and there is a resynchronization
mechanism defined

APM@FEUP 28

Biometric Authentication

» Based on the user static or dynamic physical characteristics

= Usual characteristics used in authentication systems
* Face detection and characterization
* Fingerprint acquisition and processing
* Hand geometry and lines
* Retina pattern acquisition and characterization
* Iris patterns
* Voice characterization pronouncing a known text (dynamic)
* Handwritten signature (dynamic)

Hand Iris
o Retina
&| Signature
Face Finger
Voice
Accuracy
APM@FEUP 29

Operation of a Biometric System

Name (PIN)

Enrollment is the registration. Biometric| 1 [Feature
. . xtract
Biometric features are extracted e e

and stored and associated with
User interface
an Id.
(a) Enrollment
Verification verifies if a biometric Beme (F11) -
feature corresponds to a stored Biometric | - Feature
. . sensor extractor
template associated with an Id. 7
(e.g., a PlN) - Feature
User interface true/false <€— e o

(b) Verification

Identification is done with
biometric info but no Id’s. .
The system compares with a B‘;ﬁf _ ::;'c"':r
stored template and if founds 7
one match it supplies the Soer Interiacn user's dentity or | Feature

correspond i ng Id. "user unidentified" matcher N templates
(c) Identification

APM@FEUP 30

Biometric Accuracy (1)

» The system generates a matching score

= The score quantifies similarity between the input and the closest stored
template

» Concerns
= Sensor noise produces almost always some deviations

= Detection accuracy (acquisition, position, processing, ...)

> Problems with false matches and false non-matches

Probability
density function
4

decision
threshold (1)

APM @ FEUP average matching average matching Matching score (s) 3

value of imposter value of genuine user

Biometric Accuracy (2)

» Choose a threshold minimizing false positives and negatives
* Needs large experimentations for combinations of sensors and
processing / extracting algorithms

@ Fuce O Fingerprint W Voice < Hand @ s

T

100%

3
R

&
v

false nonmatch rate

R

1%

0.0001% 0.001% 001% 0.1% 1% 10% 100%

false match rate

APM@FEUP 32

Two-factor and Multi-factor

Authentication

logic using Authentication

f rst factor logic using
Q second factor
SECURITY
\'?/

Client

It's very common a
second factor to be

based on the possession
of another communication
channel (side-channel)
with another device
(smartphone)

APM@FEUP

Client E

Multifactor Authentication

33

Basic Remote User Authentication

» Authentication over a network requires more complexity

= Should protect against eavesdropping and replay

» The main process should use a challenge / response protocol

» User sends his identifier (represents the user identity)

= Authenticator responds with a random message r (also known as a

nonce)

= User computes a value represented as f(r, h(P))
* h() is an agreed upon cryptographic hash function

* f() is another agreed upon function that can combine the value r and the hash

h(P), where P is the user password

= User sends the computed value to the host

* The host computes the same value using r and the stored hash of the

password (h(P))

» The result is positive if there is a match (user authenticated)

APM@FEUP

34

Remote Password Protocol

U — user identifier

r—nonce (random value (unique))

(), h() — identifiers of the functions or
implicitly agreed upon by both
parties

f(r', h(P")) — computed by client with the
received r (r' € r)and the user supplied
password (P’)

f(r, h(P)) — computed by host using the
transmitted value r and the stored
hash of the user U password

if previous values are equal than yes
else no
based on the old CHAP* standard (RFC 1994, from 1996)
where h(P(U)) is the stored secret, and f() is a hash function
(initially MD5)
* Challenge Handshake Authentication Protocol

||

Client :

Host
U

U, User —_—

r, random number
h(), f), functions

P
r’, return of r

(r, h(), f0)
-
fir’, h(P))
if f(r’, h(P)) =
f(r, h(P(U)))
yes/no then yes else no

CHAP can be replaced by more secure protocols like SCRAM (Salted Challenge Response Authentication Mechanism), RFC 5802, 7677, 7804
SCRAM stores on the server a salt, and a hash of a HMAC, using the salted password as a key, depending on the user U. It allows also the host

verification by the client

APM@FEUP

35

Protocols for Other Authentication Types

S S

Client Client ’
_ Host Host
U. User _l) U. User _(>
r, random number r, random number

k(). f0), functions EX), function

(r, kO, fO) (r. EQ)

P W
password to
passcode via token
r’, retum of r

B'—s BT biometric
* blometric device

D biometric device . . o

fir', (W) r’, return of r

EEe, pBT) =
(', P",BT")

if ' =rANDD' =D

AND BT = BTUU)
then yes else no

iffir', kW)=
fir, KW(U)))

ves/ino then yes else no

yes/no

(b) Protocol for a token

(¢) Protocol for static biometric

W’ — passcode from password
h(W(U)) - stored passcode hash
derived from the password

BT’ — biometric template derived
from the acquired biometrics B’
at the client side
D’ —identifier of the biometric
acquisition device
E() is an identified or agreed
encryption function (E**() — decryption)
BT(U) is the stored biometric template

belonging to user U
APM®@FEUP

Client .
Host
. U
U, User — e—
r, random number
x, random sequence
challenge

(. x EO) EQ). function

B’ X" =—BS'(x")

v emmofr E(,BS'™)

ElEe, Bs ooy =
(r’, BS'(x"))
extract B’
from (r’, BS'(x"))
ifr'=rANDx’=x
AND B’ =B(U)

yes/no then yes else no

(d) Protocol for dynamic biometric

x—random sequence of characters
orwords

BS'(x') — biometric signal generated
from vocalization, typing or writing
the sequence x’

B’ — biometric characteristics extracted
from the signal BS'(x’)

B(U) — stored biometric characteristics

of userU
36

Authentication Security Issues (1)

> Client attacks

= attacker attempts to achieve user authentication without access to
remote authenticator

* Masquerade as a legitimate user (guess the password or try many)

= Countermeasures: strong passwords; limit on the number of wrong
attempts

» Host attacks
= Attackers try to get the stored password file in the host
= Countermeasures: password hashing (slow hash); increased protection
on password database
» Eavesdropping

= attacker attempts to observe the user and transmissions: find written
passwords; keylogging; network interception

= Countermeasures: keep password secret and user memorized;
multifactor authentication; quick revocation of compromised passwords

APM@FEUP 37

Authentication Security Issues (2)

> Replay
= Attacker tries to repeat a previously captured user response
* Countermeasures: use of challenge / response; generating 1-time
passwords
» Trojan horse

= an application or device masquerades as an authentic application or
device

= Countermeasures: authentication of clients should occur within trusted
security environments
» Denial of service

= Attacker attempts to disable the authentication service (e.g., by
flooding)

= Countermeasures: multifactor authentication with a fast verifiable
token

APM@FEUP 38

