
Authentication
Security
Mechanism

PR I NCIP LE S
M ECHANIS M
AU THEN TI CATI O N FACTORS
RE MOTE A UT HENT I CATIO N

AP M @F EU P

Entities and Identities

APM@FEUP 2

Entity or principal in a system

Any actor that needs a distinction
between different instances

Identities are unique representations
of an entity

Identity system implementation

Protecting access
In many organizations today
 Specialized protection of resources (files, databases, …), services and

APIs, applications, and application specific functionalities, is needed

 For that, many times, user (or entity) identity and access control is also
implemented as a set of independent services

APM@FEUP 3

IdM – Identity Management
(information about users)

IAM – Identity and Access
Management
(authentication, authorization,
consumes IdM information)

IAG – Identity and Access
Governance
(administration, logging, detection)

The PDP-PEP pattern
In operation, the protection system in an organization, has

usually the following architecture

APM@FEUP 4

A user ① accessing resources or applications (usually using a browser) goes to some web server or service ②.
The server can act as, or delegate, to a decisor of access (the PEP). The PEP queries the PDP ③ for access rules to
some protected resource or functionality. The PDP can authenticate the user and consult the corresponding access
policies. The information is on the PIP ④. The PAP application ⓪ allows an administrator to create, modify, delete
access rules (who has access to what, and how), and the user information relative to its identity and authentication
information.

PEP – Policy enforcement point
(application of access policies)

PDP – Policy decision point
(policies: who can access what and how, in

what conditions)

PIP – Policy information persistence
(user and policy persistence in some custom
or standard database – like LDAP, Directory,
SAML, …)

PAP – Policy administration point
(app for protection administration)

Authentication Definition
Can be defined as the “binding of an identity to an entity”
 An identity is a representation or ‘name’ of some entity

 entities in computer systems (also called principals) can be users (of an
operating system, or application), can be computer nodes on a network,
or even can be programs (applications) executing on the system

Authentication is a fundamental security building block
 Is the basis of access control and accountability, and a trusted proof

mechanism for an identity

 Is distinct from message authentication
message authentication has to do with the integrity of messages sent

between two parties

 user authentication establishes (or allows trust about) the user identity

APM@FEUP 5

Process
 For authentication, some steps are needed
 1. Registration

• The information about the entities to be authenticated should be collected
and stored first

• In this information there should be an identifier representing the identity of
the entity

• Other information (location, function, contact, …)
• Complementary information associated with the entity (passphrase,

password, public key, biometrics, …)
• The registration process should be done in a way to prevent imposture

 2. Identification
• System interactions (e.g., login), allowing the user to specify his identifier

 3. Verification
• The system (an inner and protected component of the OS) verifies the

previous claim
• Asks to supply, in some form, some of the recorded complementary

information

APM@FEUP 6

Elements of the Authentication Mechanism

The Authentication mechanism has several components
 A set A of possible information for proving the identity (authentication

information)
• The #A should be very large
• An entity have an association to an element a A (by choosing or assignment)

 A set C of complementary information, which is stored, and used for
validating the elements of A
• Usually, each element of C (c C) is derived from an element of A

 A set of one or more functions F (complementation functions) used to
generate a c from a
• That is, a f F is a function of A C (f(a) c)

• It can be a cryptographic encryption, or more commonly, a cryptographic hash

 One or more authentication functions L to verify identity
• A function l L is a function of A C {true, false} (l(a, c) true || false)

 A set of selection functions S, allowing an entity to change its
authentication information (a A)
• A function s S should allow an entity to choose another a, or to get a new

association to another a; in the process the value c = f(a) is stored

APM@FEUP 7

Local authentication mechanism

APM@FEUP 8

Large set of
authentication characteristics

A one a A

user or
entity

identity
characteristics

database for
authentication data

Large set of
derived values from

the authentication characteristic
(complementary information)

C one c C

c = f(a)
derivation function

read c

get a

login function

l(a, c) true or false

chooses an a
or is assigned

Correspondence
using an identifier

s()
selection function

user id

Factors of User Authentication
The verification process uses one or more of usually four

characteristics’ types (factors) associated with users
 Something the user knows

• Can be passphrases, passwords, PINs, etc.

 Something the user possesses physically
• A key, a token, a smartcard, a smartphone, capable of interact with the system

 Something the user is (distinctive)
• Also called static biometrics
• fingerprint, face, retina, iris, etc.

 Something the user does (distinctively)
• Also called dynamic biometrics
• voice, typing, signature (handwritten), etc.

The four factors can be used alone or combined
 2FA (two factor authentication, for two different characteristics’ types)
 MFA (multi-factor authentication, usually for more than two)

All have issues

APM@FEUP 9

Password Authentication
A password should be a unique string known by the entity

 Still the most widely used authentication method
 User provides username/login id
 System asks for password (some a A)
 System compares password with that previously saved for the supplied

identifier (reading c, associated with id, and applying f(a))
• This operation is l(a, c)

After positive authentication
 Verification that the authenticated user is authorized to access the

system
• Some restriction (policies) can exist on access hours and places (terminals),

password ageing, …

 Determines the authenticated user privileges
 Uses the user identity for access control of system resources

• Create processes, execute programs, access files, query databases, …

APM@FEUP 10

Example: the Authentication Elements

A user authenticates by an eight-character password, stored
in a database table, indexed by a user id
 In this case the set A is composed by all possible strings of 8 characters,

usually restricted to printable Latin characters (say about 96 different
ones)
• There are 968 possibilities (= 7.2 x 1015), but if it is allowed a user to choose it,

they are not equiprobable
• A user password will be one of them (a A)

 In this case C = A

 Also, f() is the identity function (I()), that is, f(a) = a

 The function l(), (login) just verifies if the supplied a is equal to the
stored one, indexed by the supplied user id

 A function s() should allow store a new a in the database table, indexed
by the initially supplied user id (in the login process, and after
authentication)

APM@FEUP 11

Password Vulnerabilities and Countermeasures

Vulnerabilities
• offline dictionary attacks
• specific account attack (for a specific user, from his characteristics …)
• popular passwords attack (against a wide range of users)
• workstation hijacking
• exploiting user mistakes and social engineering
• exploiting multiple password use
• electronic monitoring

Countermeasures
• protect password file
• intrusion detection (hour, place, access pattern, errors, …)
• account lockout mechanism
• password policies
• automatic logout
• encrypted communications
• training and enforcement of policies

APM@FEUP 12

Local Linux Password System

APM@FEUP 13

hash code – passwords stored
as a cryptographic hash
calculated value (nowadays some
variation of SHA-512)

slow hash – cryptographic hash
applied many times (e.g., 1000 or
5000 times)

salt – random value or string with
some size characteristics

files scattered in the system,
with protected access
(passwd, shadow, …)

What is a Salt ?
 Random value to be combined with a password

 Prevents duplicate passwords from being visible in the
password files
 they produce different hashes with different salt values

 Increase the difficulty of offline dictionary attacks
 If the salt is not known to the attacker

 The attacker tries to find a password with the same hash as the one
stored in the password file

Not possible to know if the user has the same password in
several different systems
 The salt modifies the stored hash value that corresponds to the

password

APM@FEUP 14

Modern (Dynamic) Salt Use
Normally salts are randomly generated with a fixed size and

algorithm, and pre- or post-pended to the plain password

More recently the size (10 to 32 characters) and complexity
depend on a size and complexity evaluation of the password
 The salt is then added according to a placement algorithm

APM@FEUP 15

. . .
salt (size and complexity modulated by password)

H2()

H1()

placement hash

LS bit of each byte

placement bit string combine

final salted password hash

slow
Hash function

If a bit = 1 – place a byte of salt in that position
bit = 0 – no placement

bits = 00 – place two bytes of salt

Example:
P: password
S: %@&03U+
Placement: 10101010
SP: p%as@sw&or0d3U+

Plain password

Anatomy of a Local Password Attack
Goal
 Find an a A such that some f(a) = c, associated with an identity

 c and f() must be known to the attacker

 Direct attack
 Find f() by researching the operating system or application

 Find c, getting access to file or database where is stored

 Indirect approach
Make system trying l(a), for some entity, and see the result (true or

false)
• Many systems have limitations on the number of failed trials if l(a) is tried on

login

APM@FEUP 16

Password Cracking Attacks

APM@FEUP 17

Dictionary attacks
• Develop a large dictionary of

possible passwords and try
each against the password
file

• Each password must be
hashed using each salt value
and then compared to
stored hash values

Rainbow table
attacks
• Pre-compute tables of hash

values for all salts
• A mammoth table of hash

values
• Can be countered by using a

sufficiently large salt value
and a sufficiently large hash
length

Password crackers
exploit the fact that
people choose easily
guessable passwords
• Shorter password lengths

are also easier to crack
• Potential passwords are

generated with common
variations

John the Ripper
• Open-source password

cracker first developed in in
1996

• Uses a combination of brute-
force and dictionary
techniques

• Generates variations of
dictionary passwords

Dictionary and Rainbow Attacks
Dictionary attacks
 try each word and obvious variants in a large dictionary against hash in

password file
• facilitated if the salt is also known
• need to know the hashing algorithm or applied variation
• Can take a large amount of time

 Rainbow table attack
 Increases speed of attack
 Uses a large dictionary of possible passwords
 for each password in dictionary

• precompute a table of hash values for all possible salts
• results in a huge table of hash values (generated from a dictionary and small

hashes) of more than 10 billion entries was able to crack 99.9% of small
alphanumeric passwords in 14 s, some years ago …

• since then, salts and hashes increased in size, and password policies were
made more difficult

• A big enough rainbow table can take months (or even years) to generate

APM@FEUP 18

Another Case Study
 Some years ago (2013) 25000 passwords picked by students

at a university, with a complex password policy, were
analyzed and tried to crack

 over 10% recovered after 1010 guesses (dictionary and
variations)

APM@FEUP 19

Mazurek, M., et al.
“Measuring Password Guessability
for an Entire University.”

Proceedings of the 2013 ACM
SIGSAC Conference on Computer &
Communications Security,
November 2013

Using Better Passwords
 Care must be used when picking or assigning passwords

The goal is to eliminate guessable passwords

 Preferably still easy to remember by users

 Taking note of passwords can be OK if the user takes some precautions
• Using a password storage application (with a master password for encryption)

Techniques for password picking

 User education
• Making the user aware of the perils of guessable passwords

 Computer-generated passwords
• Completely random can be very difficult to enter and remember
• NIST FIPS 181 defines an algorithm to generate pronounceable concatenation of syllables (needs to

increase the size for same #A)

 Reactive password checking
• Periodically checks weaknesses in password guessing (running its own password cracker)

 Proactive password checking (at the time of selection) or Complex Password Policy
• Enforcement of password policy rules (rejected at the moment, if fails checking)
• use a Bloom filter (technique to quickly check if a candidate is in a large dictionary) (OPUS checker)

APM@FEUP 20

Password Anderson Formula
Anderson formula measures the probability of an attacker

guessing a password in a certain interval of time
We need to know the time interval (T)

 In an offline testing of the guess, we also need to know the number of
tests we are able to perform per time unit (G)

 And we need to know the possible number of passwords under
consideration, that should be equiprobable (N)

With these assumptions the probability (P) is calculated as:

 Example:

APM@FEUP 21

P

Let passwords be composed of characters from a 65 alphabet, and suppose we
can test 106 passwords per second. How long should a password be (L characters)
to guarantee a probability at most 1/1000 over 1 year of testing?

We have ்ீ
 = ଷହ×ଶସ×ଷ×ଵ

ల

.ଵ = 31.536 x 1015, N = 65L, L 10

Token Based Authentication
Object possession to use as authentication
 Memory objects
 Smartcards

Memory objects store but not process data
 Used after reading for access (e.g., hotel rooms)
 The access hardware can verify a PIN (or password) also stored in the object
 Have some drawbacks

• Can be easy to duplicate
• Needs special readers
• A loss can be problematic
• User dissatisfaction

 Smartcards
 Has memory, processor, and I/O

• Can generate a dynamic password (e.g., based on date/time or other parameters)
• Can use challenge / response
• Can use a PIN as second factor

One-time passwords (OTP) and devices

APM@FEUP 22

Smartcard Operation

APM@FEUP 23

Electronic Identity (eID) System
Used in passports, citizen cards, drivers license
 provides a national electronic identity (eID)

• Its implementation is based on wired or wireless smartcards

Can provide a stronger proof of identity and signature

Usual data stored in the card
 Personal data (name, address, birthplace, birthdate, …)

 Unique document number

 Card access codes (PINs)

Machine Readable Zone (public info)

 Private Key

 Public Key and Certificate(s)

 Can use challenge / response for proving identity

 Used also in official digital signatures

APM@FEUP 24

Functions and Data for eID Cards

APM@FEUP 25

CAN – card access number
MRZ – machine readable

zone
PACE – password
authenticated connection
establishment

PIN – personal
identification number

PACE

APM@FEUP 26

Ensures that the
contactless RF chip in
the eID card cannot be
read without explicit
access control

For online
applications, access is
established by the user
entering the 6-digit
PIN (which should only
be known to the
holder of the card)

For offline
applications, either the
MRZ printed on the
back of the card, or the
six-digit card access
number (CAN) printed
on the front is used

User Authentication with eID

APM@FEUP 27

One Time Passwords (OTP)
Passwords that are used only once (age policy)
The entity and the authenticator must have a means of

calculating the next same password
 For a human, usually a device in his possession is used, or a

software generator
• Needs an initial synchronization with the authenticator

 Several methods have been proposed and implemented
S/Key – Uses a series of hashes, from an initial seed K

• To attack the next password one hash function h() should be inverted
• Only brute-force attacks are known, infeasible if h() has a large result
• OPIE is an implementation device of S/Key

HOTP – HMAC based OTP Algorithm
• Uses a shared key K, and an 8-byte counter c, in a standard described in RFC 4226
• The counter is incremented each time a new password is generated

TOTP – Time based OTP Algorithm
• Defines an initial counter time t0, a time step x, and uses a time variable t
• Described as a standard in RFC 6238
• Time t must be synchronized (within a tolerance), and there is a resynchronization

mechanism defined

APM@FEUP 28

Biometric Authentication
 Based on the user static or dynamic physical characteristics
 Usual characteristics used in authentication systems

• Face detection and characterization
• Fingerprint acquisition and processing
• Hand geometry and lines
• Retina pattern acquisition and characterization
• Iris patterns
• Voice characterization pronouncing a known text (dynamic)
• Handwritten signature (dynamic)

APM@FEUP 29

Operation of a Biometric System

APM@FEUP 30

Verification verifies if a biometric
feature corresponds to a stored
template associated with an Id.
(e.g., a PIN).

Identification is done with
biometric info but no Id’s.
The system compares with a
stored template and if founds
one match it supplies the
corresponding Id.

Enrollment is the registration.
Biometric features are extracted
and stored and associated with
an Id.

Biometric Accuracy (1)
The system generates a matching score
 The score quantifies similarity between the input and the closest stored

template

Concerns
 Sensor noise produces almost always some deviations

 Detection accuracy (acquisition, position, processing, ...)

 Problems with false matches and false non-matches

APM@FEUP 31

Biometric Accuracy (2)
Choose a threshold minimizing false positives and negatives
 Needs large experimentations for combinations of sensors and

processing / extracting algorithms

APM@FEUP 32

Two-factor and Multi-factor

APM@FEUP 33

It’s very common a
second factor to be
based on the possession
of another communication
channel (side-channel)
with another device
(smartphone)

Basic Remote User Authentication
Authentication over a network requires more complexity
 Should protect against eavesdropping and replay

The main process should use a challenge / response protocol
 User sends his identifier (represents the user identity)

 Authenticator responds with a random message r (also known as a
nonce)

 User computes a value represented as f(r, h(P))
• h() is an agreed upon cryptographic hash function
• f() is another agreed upon function that can combine the value r and the hash

h(P), where P is the user password

 User sends the computed value to the host

 The host computes the same value using r and the stored hash of the
password (h(P))

 The result is positive if there is a match (user authenticated)

APM@FEUP 34

Remote Password Protocol

APM@FEUP 35

U – user identifier
r – nonce (random value (unique))
f(), h() – identifiers of the functions or

implicitly agreed upon by both
parties

f(r’, h(P’)) – computed by client with the
received r (r’ r) and the user supplied
password (P’)

f(r, h(P)) – computed by host using the
transmitted value r and the stored
hash of the user U password

if previous values are equal than yes
else no

based on the old CHAP* standard (RFC 1994, from 1996)
where h(P(U)) is the stored secret, and f() is a hash function
(initially MD5)
* Challenge Handshake Authentication Protocol

CHAP can be replaced by more secure protocols like SCRAM (Salted Challenge Response Authentication Mechanism), RFC 5802, 7677, 7804
SCRAM stores on the server a salt, and a hash of a HMAC, using the salted password as a key, depending on the user U. It allows also the host
verification by the client

Protocols for Other Authentication Types

APM@FEUP 36

W’ – passcode from password
h(W(U)) – stored passcode hash

derived from the password

BT’ – biometric template derived
from the acquired biometrics B’
at the client side

D’ – identifier of the biometric
acquisition device

E() is an identified or agreed
encryption function (E-1() – decryption)

BT(U) is the stored biometric template
belonging to user U

x – random sequence of characters
or words

BS’(x’) – biometric signal generated
from vocalization, typing or writing
the sequence x’

B’ – biometric characteristics extracted
from the signal BS’(x’)

B(U) – stored biometric characteristics
of user U

Authentication Security Issues (1)
Client attacks
 attacker attempts to achieve user authentication without access to

remote authenticator
• Masquerade as a legitimate user (guess the password or try many)

 Countermeasures: strong passwords; limit on the number of wrong
attempts

Host attacks
 Attackers try to get the stored password file in the host
 Countermeasures: password hashing (slow hash); increased protection

on password database

 Eavesdropping
 attacker attempts to observe the user and transmissions: find written

passwords; keylogging; network interception
 Countermeasures: keep password secret and user memorized;

multifactor authentication; quick revocation of compromised passwords

APM@FEUP 37

Authentication Security Issues (2)
 Replay
 Attacker tries to repeat a previously captured user response

 Countermeasures: use of challenge / response; generating 1-time
passwords

Trojan horse
 an application or device masquerades as an authentic application or

device

 Countermeasures: authentication of clients should occur within trusted
security environments

 Denial of service
 Attacker attempts to disable the authentication service (e.g., by

flooding)

 Countermeasures: multifactor authentication with a fast verifiable
token

APM@FEUP 38

