Authentication Security Mechanism

PRINCIPLES MECHANISM AUTHENTICATION FACTORS REMOTE AUTHENTICATION

APM@FEUP

Protecting access

>In many organizations today

- Specialized protection of resources (files, databases, ...), services and APIs, applications, and application specific functionalities, is needed
- For that, many times, user (or entity) identity and access control is also implemented as a set of independent services

IdM – Identity Management (information about users)

IAM – Identity and Access Management (authentication, authorization, consumes IdM information)

IAG – Identity and Access Governance (administration, logging, detection

Identity & Access Management	Identity & Access Governance		
 Authentication (2FA) 	Role catalog, lifecycle		
■ Single sign-on (SSO)	Access certifications		
Web proxy / API gateway	Segregation of duties		
Consent / policy management	Reporting		
■ Identity store ■ Se	Session data		
Attribute store	entity synchronization		
Credential store	ential store Identity transformation		
	E Identity & Access Management Authentication (2FA) Single sign-on (SSO) Web proxy / API gateway Consent / policy management E Identity store = 56 Attribute store = 16 Credential store = 16		

Entities and Identities

Entity or principal in a system

Any actor that needs a distinction between different instances

Identities are unique representations of an entity

Identity system implementation

The PDP-PEP pattern

>In operation, the protection system in an organization, has usually the following architecture

PEP – Policy enforcement point (application of access policies)

PDP – Policy decision point (policies: who can access what and how, in what conditions)

PIP – Policy information persistence (user and policy persistence in some custom or standard database – like LDAP, Directory, SAML, ...)

PAP – Policy administration point (app for protection administration)

A user ① accessing resources or applications (usually using a browser) goes to some web server or service ②. The server can act as, or delegate, to a decisor of access (the PEP). The PEP queries the PDP ③ for access rules to some protected resource or functionality. The PDP can authenticate the user and consult the corresponding access policies. The information is on the PIP ④. The PAP application ③ allows an administrator to create, modify, delete access rules (who has access to what, and how), and the user information relative to its identity and authentication information.

Authentication Definition

- >Can be defined as the "binding of an identity to an entity"
- An identity is a representation or 'name' of some entity
- entities in computer systems (also called principals) can be users (of an operating system, or application), can be computer nodes on a network, or even can be programs (applications) executing on the system
- > Authentication is a fundamental security building block
- Is the basis of access control and accountability, and a trusted proof mechanism for an identity
- Is distinct from message authentication
- message authentication has to do with the integrity of messages sent between two parties
- user authentication establishes (or allows trust about) the user identity

Process

- > For authentication, some steps are needed
- I. Registration
- The information about the entities to be authenticated should be collected and stored first
- In this information there should be an identifier representing the identity of the entity
- Other information (location, function, contact, ...)
- Complementary information associated with the entity (passphrase, password, public key, biometrics, ...)
- The registration process should be done in a way to prevent imposture
- 2. Identification
- System interactions (e.g., login), allowing the user to specify his identifier
- 3. Verification
- The system (an inner and protected component of the OS) verifies the previous claim
- Asks to supply, in some form, some of the recorded complementary information

APM@FEUP

APM@FEUP

Local authentication mechanism

- A set A of possible information for proving the identity (authentication information)
- The #A should be very large

APM@FEUP

- An entity have an association to an element a \in A (by choosing or assignment)
- A set C of complementary information, which is stored, and used for validating the elements of A

Elements of the Authentication Mechanism

> The Authentication mechanism has several components

- Usually, each element of C (c \in C) is derived from an element of A
- A set of one or more functions F (complementation functions) used to generate a c from a
- That is, a f ∈ F is a function of A → C (f(a) → c)
 It can be a cryptographic encryption, or more commonly, a cryptographic hash
- One or more authentication functions L to verify identity
- A function $I \in L$ is a function of $A \times C \rightarrow \{true, false\}$ (I(a, c) $\rightarrow true \parallel false$)
- A set of selection functions S, allowing an entity to change its authentication information (a ∈ A)
- A function s ∈ S should allow an entity to choose another a, or to get a new association to another a; in the process the value c = f(a) is stored

5

Factors of User Authentication	Password Authentication			
 The verification process uses one or more of usually four characteristics' types (factors) associated with users Something the user knows Can be passphrases, passwords, PINs, etc. Something the user possesses physically A key, a token, a smartcard, a smartphone, capable of interact with the system Something the user is (distinctive) Also called static biometrics fingerprint, face, retina, iris, etc. Something the user does (distinctively) Also called dynamic biometrics voice, typing, signature (handwritten), etc. The four factors can be used alone or combined 2FA (two factor authentication, for two different characteristics' types) MFA (multi-factor authentication, usually for more than two) All have issues 	 A password should be a unique string known by the entity Still the most widely used authentication method User provides username/login id System asks for password (some a ∈ A) System compares password with that previously saved for the supplied identifier (reading c, associated with id, and applying f(a)) This operation is l(a, c) After positive authenticated user is authorized to access the system Some restriction (policies) can exist on access hours and places (terminals), password ageing, Determines the authenticated user privileges Uses the user identity for access control of system resources Create processes, execute programs, access files, query databases, 			
APM@FEUP 9	APM@FEUP 10			
Example: the Authentication Elements	Password Vulnerabilities and Countermeasures			

- A user authenticates by an eight-character password, stored in a database table, indexed by a user id
- In this case the set A is composed by all possible strings of 8 characters, usually restricted to printable Latin characters (say about 96 different ones)
- There are 96⁸ possibilities (= 7.2 x 10¹⁵), but if it is allowed a user to choose it, they are not equiprobable
- A user password will be one of them (a \in A)
- In this case C = A
- Also, f() is the <u>identity</u> function (I()), that is, f(a) = a
- The function I(), (login) just verifies if the supplied a is equal to the stored one, indexed by the supplied user id
- A function s() should allow store a new a in the database table, indexed by the initially supplied user id (in the login process, and after authentication)

- > Vulnerabilities
 - offline dictionary attacks
 - specific account attack (for a specific user, from his characteristics ...)
 - popular passwords attack (against a wide range of users)
 - workstation hijacking
 - exploiting user mistakes and social engineering
 - exploiting multiple password use
 - electronic monitoring

≻Countermeasures

- protect password file
- intrusion detection (hour, place, access pattern, errors, ...)
- account lockout mechanism
- password policies
- automatic logout
- encrypted communications
- training and enforcement of policies

Local Linux Password System

hash code – passwords stored as a cryptographic hash calculated value (nowadays some variation of SHA-512)

slow hash – cryptographic hash applied many times (e.g., 1000 or 5000 times)

salt – random value or string with some size characteristics

files scattered in the system, with protected access (passwd, shadow, ...)

APM@FEUP

Modern (Dynamic) Salt Use

Normally salts are randomly generated with a fixed size and algorithm, and pre- or post-pended to the plain password

>More recently the size (10 to 32 characters) and complexity depend on a size and complexity evaluation of the password

The salt is then added according to a placement algorithm

What is a Salt ?

- > Random value to be combined with a password
- Prevents duplicate passwords from being visible in the password files
- they produce different hashes with different salt values
- Increase the difficulty of offline dictionary attacks
- If the salt is not known to the attacker
- The attacker tries to find a password with the same hash as the one stored in the password file
- Not possible to know if the user has the same password in several different systems
- The salt modifies the stored hash value that corresponds to the password

APM@FEUP

14

Anatomy of a Local Password Attack

- > Goal
 - Find an a ∈ A such that some f(a) = c, associated with an identity
 - c and f() must be known to the attacker
- Direct attack
- Find f() by researching the operating system or application
- Find c, getting access to file or database where is stored
- > Indirect approach
- Make system trying l(a), for some entity, and see the result (true or false)
- Many systems have limitations on the number of failed trials if I(a) is tried on login

Another Case Study

- Some years ago (2013) 25000 passwords picked by students at a university, with a complex password policy, were analyzed and tried to crack
- over 10% recovered after 10¹⁰ guesses (dictionary and variations)

Mazurek, M., et al. "Measuring Password Guessability for an Entire University." Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, November 2013

Using Better Passwords

- Care must be used when picking or assigning passwords
- > The goal is to eliminate guessable passwords
- Preferably still easy to remember by users
- Taking note of passwords can be OK if the user takes some precautions
- Using a password storage application (with a master password for encryption)
- > Techniques for password picking
- User education
- Making the user aware of the perils of guessable passwords
- Computer-generated passwords
- Completely random can be very difficult to enter and remember
- NIST FIPS 181 defines an algorithm to generate pronounceable concatenation of syllables (needs to increase the size for same #A)
- Reactive password checking
- Periodically checks weaknesses in password guessing (running its own password cracker)
- Proactive password checking (at the time of selection) or Complex Password Policy
- Enforcement of password policy rules (rejected at the moment, if fails checking)
- use a Bloom filter (technique to quickly check if a candidate is in a large dictionary) (OPUS checker)

19

Password Anderson Formula

- Anderson formula measures the probability of an attacker guessing a password in a certain interval of time
- We need to know the time interval (T)
- In an offline testing of the guess, we also need to know the number of tests we are able to perform per time unit (G)
- And we need to know the possible number of passwords under consideration, that should be equiprobable (N)
- > With these assumptions the probability (P) is calculated as:

> Example:

Let passwords be composed of characters from a 65 alphabet, and suppose we can test 10^6 passwords per second. How long should a password be (L characters) to guarantee a probability at most 1/1000 over 1 year of testing?

We have $N \ge \frac{TG}{P} = \frac{365 \times 24 \times 3600 \times 10^6}{0.001} = 31.536 \times 10^{15}$, N = 65^L, L \ge 10

APM@FEUP

21

Smartcard Operation

Token Based Authentication

- > Object possession to use as authentication
 - Memory objects
- Smartcards
- Memory objects store but not process data
- Used after reading for access (e.g., hotel rooms)
- The access hardware can verify a PIN (or password) also stored in the object
- Have some drawbacks
- Can be easy to duplicate
- Needs special readers
- A loss can be problematic
- User dissatisfaction
- Smartcards
- Has memory, processor, and I/O
- Can generate a dynamic password (e.g., based on date/time or other parameters)
- Can use challenge / response
- Can use a PIN as second factor
- > One-time passwords (OTP) and devices

APM@FEUP

Electronic Identity (eID) System

- > Used in passports, citizen cards, drivers license
- provides a national electronic identity (eID)
- Its implementation is based on wired or wireless smartcards
- Can provide a stronger proof of identity and signature
- > Usual data stored in the card
- Personal data (name, address, birthplace, birthdate, ...)
- Unique document number
- Card access codes (PINs)
- Machine Readable Zone (public info)
- Private Key
- Public Key and Certificate(s)
- Can use challenge / response for proving identity
- Used also in official digital signatures

Functions and Data for eID Cards

	Function	Purpose	PACE Password	Data	Uses	
CAN – card access number MRZ – machine readable zone PACE – password authenticated connection establishment PIN – personal identification number	ePass (mandatory)	Authorized offline inspection systems read the data	CAN or MRZ	Face image; two fingerprint images (optional), MRZ data	Offline biometric identity verification reserved for government access	
	eID (activation optional	Online applications read the data or acess functions as authorized	eID PIN	Family and given names; artistic name and doctoral degree: date and place of birth; address and community ID; expiration date	Identification; age verification; community ID verification; restricted identification (pseudonym); revocation query	
		Offline inspection systems read the data and update the address and community ID	CAN or MRZ			
	eSign (certificate optional	A certification authority installs the signature certificate online	eID PIN	Signature key; X.509 certificate	Electronic signature creation	
		electronic signature with eSign PIN	CAN			
APM@FEUP 25						

User Authentication with eID

- The entity and the authenticator must have a means of calculating the next same password
- For a human, usually a device in his possession is used, or a software generator
- Needs an initial synchronization with the authenticator
- Several methods have been proposed and implemented
- S/Key Uses a series of hashes, from an initial seed K
- To attack the next password one hash function h() should be inverted
- Only brute-force attacks are known, infeasible if h() has a large result
- OPIE is an implementation device of S/Key
- HOTP HMAC based OTP Algorithm
- Uses a shared key K, and an 8-byte counter c, in a standard described in RFC 4226
- The counter is incremented each time a new password is generated
- TOTP Time based OTP Algorithm
- Defines an initial counter time $t_{\mbox{\scriptsize o}}$, a time step x, and uses a time variable t
- Described as a standard in RFC 6238
- Time t must be synchronized (within a tolerance), and there is a resynchronization mechanism defined

PACE

Biometric Authentication

- > Based on the user static or dynamic physical characteristics
- Usual characteristics used in authentication systems
- Face detection and characterization
- Fingerprint acquisition and processing
- Hand geometry and lines
- Retina pattern acquisition and characterization
- Iris patterns

APM@FEUP

- Voice characterization pronouncing a known text (dynamic)
- Handwritten signature (dynamic)

29

Biometric Accuracy (1)

- The system generates a matching score
- The score quantifies similarity between the input and the closest stored template
- Concerns
- Sensor noise produces almost always some deviations
- Detection accuracy (acquisition, position, processing, ...)
- Problems with false matches and false non-matches

Operation of a Biometric System

Enrollment is the registration. Biometric features are extracted and stored and associated with an Id.

(a) Enrollment

Verification verifies if a biometric feature corresponds to a stored template associated with an Id. (e.g., a PIN).

Identification is done with biometric info but no Id's. The system compares with a stored template and if founds one match it supplies the corresponding Id.

APM@FEUP

Biometric Accuracy (2)

- > Choose a threshold minimizing false positives and negatives
- Needs large experimentations for combinations of sensors and processing / extracting algorithms

- $f(r', h(P')) computed by client with the received r (r' \leftarrow r) and the user supplied password (P')$
- f(r, h(P)) computed by host using the transmitted value r and the stored hash of the user U password

if previous values are equal than yes else no

based on the old CHAP* standard (RFC 1994, from 1996) where h(P(U)) is the stored secret, and f() is a hash function (initially MD5) * Challenge Handshake Authentication Protocol

CHAP can be replaced by more secure protocols like SCRAM (Salted Challenge Response Authentication Mechanism), RFC 5802, 7677, 7804 SCRAM stores on the server a salt, and a hash of a HMAC, using the salted password as a key, depending on the user U. It allows also the host verification by the client

E(), function $B' \longrightarrow BT'$ biometric password to D' biometric device $B', x' \longrightarrow BS'(x')$ passcode via token E(r' D' RT' E(r', BS'(x')r', return of r f(r' h(V r', return of r r', return of r ${}^{-1}E(r', P', BT') =$ F(r', BS'(x')) =if f(r', h(W')) =(r', P', BT') (r', BS'(x'))f(r, h(W(U)))if r' = r AND D' = Dextract B' then yes else no AND BT' = BT(U)from (r', BS'(x'))then yes else no if r' = r AND x' = xAND B' = B(U)(b) Protocol for a toker then yes else no (c) Protocol for static biometric (d) Protocol for dynamic biometric W' – passcode from password BT' - biometric template derived x – random sequence of characters h(W(U)) – stored passcode hash or words from the acquired biometrics B' derived from the password BS'(x') - biometric signal generated at the client side from vocalization, typing or writing D' – identifier of the biometric the sequence x' acquisition device E() is an identified or agreed B' – biometric characteristics extracted from the signal BS'(x') encryption function (E^{-1}) – decryption) B(U) - stored biometric characteristics BT(U) is the stored biometric template

belonging to user U

35

APM@FEUP

36

of user U

Authentication Security Issues (1)

≻Client attacks

- attacker attempts to achieve user authentication without access to remote authenticator
- Masquerade as a legitimate user (guess the password or try many)
- Countermeasures: strong passwords; limit on the number of wrong attempts
- Host attacks
- Attackers try to get the stored password file in the host
- Countermeasures: password hashing (slow hash); increased protection on password database
- > Eavesdropping
- attacker attempts to observe the user and transmissions: find written passwords; keylogging; network interception
- Countermeasures: keep password secret and user memorized; multifactor authentication; quick revocation of compromised passwords

37

Authentication Security Issues (2)

- > Replay
- Attacker tries to repeat a previously captured user response
- Countermeasures: use of challenge / response; generating 1-time passwords
- Trojan horse
- an application or device masquerades as an authentic application or device
- Countermeasures: authentication of clients should occur within trusted security environments
- Denial of service
- Attacker attempts to disable the authentication service (e.g., by flooding)
- Countermeasures: multifactor authentication with a fast verifiable token