Web
Security

COOKIES
OAUTH 2.0 AND OPENID CONNECT
, TOKENS
; CONNECTION PROTECTION IN SEVERAL FLOWS

'~ APM@FEUP

Web applications and attack surface

external

resources
network attacker

—

i

11

[11T

g\ web serverc e
t\’ 0 — 0
r] ° o mmm

app web

0 HTTP protocol S —
i client O HTTP web request =
browser @ HTML web response <

(HTML, CSS, JS, images)
web

service

) |< . database
web attacker =)
(malicious site) . —

" APM@FEUP 2

Security needs

As any other application and resource access

= Web apps often need user identification, authentication, authorization

The HTTP protocol is stateless

* Some mechanism to assure that several requests come from the same
user, after authentication, is needed

= Establishment of a session

= Cookies were invented in 1994 (Netscape), patented, and standardized
* [IETF RFC 21209 and RFC 2965, with the more recent RFC 6265 (2011)
* They are automatically transported between web app and browser
* They can carry session identification

1. The browser requests a web page

HTTP/1.0 200 OK
Conte nt-type: text/html 2. The server sends the page and the cookie

Set-Cookie: theme=light _
Hello World!

Set-Cookie: sessionToken=abc123; Expires=Wed, og Jun 2021 10:18:14 GMT
3. The browser requests another page from the same server

=
[¢)])
o
o
=
S
=
[72]
(&)
o

JOATAS QAN

GET /spec.htm| HTTP/1.1
Host: www.example.org
Cookie: theme=light; sessionToken=abc123

APM@FEUP 3

http://www.example.org/

Cookie authentication

Besides a pair name-value cookies can have more attributes

» Domain and Path specify the server domain (and subdomains) and the
address (and subpages) to where cookies can be returned

= Expires (or Max-Age) specifies the validity in time
* If omitted, only valid for the current session

= Secure and HttpOnly limits the cookie communication to encrypted

transmission only (the first) and not readable by client-side scripting
(the second)

Using some authentication/authorization protocol

Browser Web Server Auth server

POST login.cgi
Username & pwd Validate user ,

. Set-cookie: auth=val . auth=val

Store val

GET restricted.html

Cookie: auth=val restricted.html

auth=val Check val

4

. If YES,
restricted.html

YES/NO

APM@FEUP

Session hijacking

Cookies can be transmitted in clear text
= Vulnerable to eavesdropping

= Once a valid cookie is captured, it can be used directly or used in a man-
in-the-middle attack

= Counter-measure: protect the channel (SSL/TLS with HTTP - HTTPS)
DNS cache poisoning

» Fabrication of sub-domains to get the cookies

Malicious addresses

= Accessed using cross-site scripting (XSS)
* Script in the same site directs information to another (malicious) site

= Performing operations on a legitimate site through cross-site request
forgery (CSRF)

» User executes script in a malicious site that uses non-expired cookies in valid
operations on previous visited site

" Proxy request
* A proxy server is specified through XSS

/ APM@FEUP 5
% A/,' o

Web authentication / authorization

Many systems have been proposed and developed
= For many general-purpose scenarios
= Using specialized servers as identity and/or authorization providers

» They can use external devices to identify the user
« APIV system, using a smartcard, and a PIN or biometric 2"d factor

* In large enterprises, a single authentication server can perform this
operation for many web applications

= Or several organizations can rely on a third-party identification and
authentication server

* These are called single sign-on solutions (or SSO)

* These web security mechanisms that involve several servers rely on
» Automatic redirections between them (HTTP 302 (temporary change))
* Small document for information transport (tokens)

/ APM@FEUP
% A/,' o

PIV - Personal Identity Verification

Based on smartcard possession
= Standardized by NIST (FIPS 201-2) / European countries have similar

= Usually requires 2FA (card + PIN / biometrics)

PIV Application APl on PIV
on Local System Local System Card Edge

PIV card issuance
and management Present card

PKI directory & -"“"';""t““"“ (HolderV) Connect
ata

certificate status T
Identity profiling _Beg—,__

responder !
i i) 1 . g oo ok
& registration 1 Py “i“y Select application
]
]

Select application

TESOUrCe

Retrieve PIV
AUTH certificate

Read value (PIV Auth certificate)

Access Control

Ke Validate certificate
€y A Authorization (signature, expiration, and |- PIV Auth certificate returned
revocation) (CredV)

Retrieve algorithm
Authorization 1D and key size for
signature request

1&A = Identificution and Autbentication Verify PIN

\Card reader/ - Acquire PIN PIN ACK
(HolderV)

%, fwriter LEGEND

Shapes I
= Diirection of information flow Retrieve FASC-N
from the certificate
I:I Processes
Verify signed
Gﬂ Components data—card
possesses private
key (CardV) End transaction

]
[} S Biometric ;
\ reader / [Disconnect
| Reject | Cardholder identifier

- based on a signed certificate
. . CardV = Card validation
- d SlgnatU re prOV|ng the CredV = Credential validation

HolderV = Cardholder validation

pr'Vate key pOSSESSIOﬂ FASC-N = Federal Agency Smart Credential Number
APM@FEUP matching the certificate Authentication

Single-sign-on and federated authentication

Applications
Service providers

Identity provider

”"v{:’" / ID token
' - User attributes

Redirect

Identity Identity ©
~ attributes E attributes E

~ database database

Shibboleth

/ / APM®@FEUP

OAuth 2.0 Authorization Actors

OAuth was specified for allowing users be aware of
operations in protected resources (usually created by them)
by web apps that use the resources

» OAuth 2.0 is standardized and described in RFC 6749

* Specifies an authorization flow for web APIs and resource access on behalf of a
web application and user

* It's not specifically an authentication protocol, but implicitly must include
authentication

* Depends on the quality of the user registration
* It can be adapted for many situations and scenarios

authorization
provider

\ protected

client app

|

\: ‘
[T
BEEERRER

browser

service resource 9

/ APM@FEUP

OAuth 2.0 authorization basic flow

Authorization Code Flow (RFC 6749, 4.1)

App makes an
App asks User whether PP ATE authorization request to Authorization
to link to Service, and Service’s authorization Authori URCEIE Server returns

1‘ ,“ i . . 5 c - Re e 3)
User responds to it. Link to Service | ndp()lzt. ------’lo Authorization Endpoint info about the s‘o.ur((S¢ rYU ;
---—----.@ ABC? Rae Re access token. verifies the access
: , ’ , ! gy, Al @ _____ p.token and returns
User "* Ye\S J [No] g /'I’ ,' the requested
1 N - s !] : : ’ .
N - . Introspection Endpoint © «...... @ resource. ;
: \\ Sema—- Service returns ,' ’,' ,’ P P ‘R . r @
I \ an authorization ; ! S30UICE SEIVEY
1 ') 1! Token Endpoint @~ inquires of | &
! App displays page to App ,’ I N) £
I I * \ Authorization @
I the authorization “S~a 4- Ao Y il
1 Authorization Page ’ I App presents the Server info
1 page to User. : e \ = !
1 Aop X2 1 3 s \ authorization code to 1 : about the
: thpeppermliss;ieoqnuse;ellr:)%v // ‘\ Service’s token endpoint. " .l access token. Web
i : . o \ I eb API
| fil ' Service issues N | 1 Service issues :
" '“ “ AR - A
4 hesa by ! ashort-lived ; :
2. Post to timeline K © A @ an access token
" authorization code. *{ Authz Code [== 7 oA
1 User checks the requested| Approve? : R . , ,’A pp.r ts tl
I permissions, inputs ID and I [Access Token J4' kol T
I : . [0 [I I access token and Ry 8
1 password to login Service, 1 ", @ :
:and approves the [‘ I ’l roquosts Resource
:authorization request. ,_-______f """"""""""" .
\ | Resource [MBleeee...onnneeenieraneee
S @) (@) = Web API call

APM@FEUP

The authorization request

It is a redirection (as a response to another HTTP request)

" The client app should be previously registered with the server

HTTP/1.1 302 (or 303) Found
Location: https://authorization-server.com/auth?
{or , or
&client id=29352735982374239857

&redirect uri=shttps://example-app.com/callback

&scope=screate+delete

&state=xcoivjuywkdkhvusuye3keh (CSRF protection)
&code_challenge=tg6jkhwdl9twedkjhd3j (PKCE protection)

&code_challenge_method=5256 (PKCE protection)

" The response_type determines the flow

* If it includes id_token an authentication is also performed and returns an
ID Token

APM@FEUP 11

OpenlD Connect

OAuth 2.0 does not provide any direct user identification

* The web app does know nothing about the user
 Authorization codes and access tokens are opaque to the app

OpenlD Connect extends OAuth

= Uses provider authentication and supplies an identification token
* represents the user and contains user info (claims)

response_type=id_token

response_type=code id_token

<> Authorization
Endpoint

Authorization
Endpoint

> 4
ID Token 4 «
5 Authorization Code ")K€

. L Token

Endpoint Endpoint

ID Token

APM@FEUP 12

o

Protective implementation of OAuth

RFC 6819 recommends good practices in OAuth 2.0
implementations
= All of them should be followed
* One of them addresses a potential CSRF attack

Obtains a legitimate
authorization code (from his own
subscription) from the authorization

attacker provider

injects it as the auth code of another user tricking him to click

some link containing a forged request to == ,ythorization
= provider

the app, as if itis a reply from the = B
auth provider

user

Protection: include a

state value when asking %

_' ' browser :
| / 2Rl FEUP for authorization client app =

OAuth code stolen protection

User interrupts access after obtaining a valid auth code

= Because the auth code comes in a parameter in the redirection from the
auth server, it remains in the user’s browser history ...

= Potentially an attacker can see it in the browser history, an perform a
legitimate authorization replacing his own code with another user code

verifier in the back-
channel request to the

= authorization server o [—
0

Resource Client generates the authorization Authorization

Dwner .
code verifier and Server ‘/?} Server

challenge, includes the
challenge in the front-

channel request to the
\ | authorization server

Protected Protected
Resource Resource

Protection: Proof Key for Code Exchange (PKCE)
APM@FEUP 14

OAuth code grant and token exchange

Security protections:
CSRF protection (state) ? authorization
and PKCE = = server

(code_challenge [code_verifier)

user

-------- il client
SN~ - > e

browser © app

® Authorization request (redirect)

»
»

state=xxxxxxxx & code_challenge=yyyyyyy & code_challenge_method=5256

® AUthOrization d ialog (d I reCt) code_verifier (random) is generated and stored
B R in the client application
/ @ COde response (redirect) code_challenge = H(code_verifier)

code_challenge_method specifies which H

state=>oxxaoaooxx & COde=CCCCCCCCC (authorization code)

® Token exchange (direct)

n

, code=ccccccccc & code_verifier=zzzzzzzzzzz
/ APM@ FEUP <—— The access token is returned if the code is verified 15

Tokens

Tokens are small documents protected against
» forgery (usually signed by the originator)
* disclosure and modification (encrypted and authenticated)
* The destination (audience) can verify, know the origin, and read the content

= They usually carry authentication, authorization data, user identity
* In the form of name/value pairs, aka claims
* The audience trusts the issuer (IdP, AuthN or AuthZ services)

= Tokens can use a JSON format (called ‘jots’, aka as standard JWT)

* RFC 7519, together with RFC 7515 (JWS), RFC 7516 (JWE), RFC 7517 (JWA),
RFC7518 (JWK)

 Used together these standards form the JOSE (JSON Object Signing and
Encryption) defined and exemplified in RFC 7265 and RFC 7520

Identity Provider

Authorization server
Authentication server = — ;

i AUithentication

resource provider

browser _
client app 2

lient
- APM@FEUP identity token A 16

JWT format with a signature (JWS)

These tokens carry information directly from an issuer to the
audience (the application that uses it)

= e.g., an identity token from an IdP to a client app

= Using a cryptographic signature, the audience can verify the integrity
and the origin

BASEG4URL-ENCODE BASEG64URL-ENCODE ASEG: RL- The Signature iS performed
(utre(JOSE Header)) | ° (JWS Payload) :
over the 2 first parts
can be a HMAC (shared key)
{'typ": JWT, or use RSA or ECC (asymmetric)
‘alg’: *HS256'} {iss': issuer ‘nonce’: anti-replay

‘acr’, ‘amr’: authn characterization

'sub’: subject :
‘at_hash’, ‘c_hash’: companion hashes

‘aud’: audience
‘exp’: expiration
‘iat": issued at
Yjti': unique id

Openld Connect token

private key

public key public key

ID Token

/ APM@FEUP 17

JWT with encryption (JWE)

When a token contains confidential info, it should use JWE

= E.g., when received by an app to be used in a resource server, the app
doesn’t need to know the content

= JWE specifies a 5-part token

BASEGIURL-ENCODE BASES4URL-ENCODE BASESURL-ENCODE BASEGALRL-EMNCOD BASEGIURL-ENCODE

(uTFe(JOSE Header)) | * | (JWE Encrypted Key) | * | (Initialization Vector) | - * | (Authentication Tag)

—

{'‘typ’: JWT’, PR ETIEE ey _ random IV the encrypted payload. the MAC produced by the
‘enc’: "A256GCM’ encrypted by an asymmetric (different for each token) GCM algorithm
‘alg’: 'RSA-OAEP'} public key (from the audience) iTrerent tor €a :
LT:;;S&;;Z;EE;?E KeEg?/\:?;:d The destination server must be Sometimes to guara.nt.y to the client app
authentication and AD (the GCM mode RO S b Tl knowledge Ut ICI W CLTREEE
; : : Authorization server and its public token, this JWE can be the payload of
Rl Ve The AD s derived from key stored. a JWS, verified and extracted at the app.

the header byte sequence.

private key
registration

0 public key public key
{22«‘
\- Access Token

CQ/‘ »
request @V}/

' / APM®FEUP 18

Opaque tokens and introspection

These tokens carry on just a meaningless random string

= The claims are maintained on a database at the emitter (authorization
server for access tokens)

= The emitter must have an introspection endpoint with an authenticated
access to the claims of a token

* It's also possible a hybrid implementation

Access Token

Authorization Server

Opaque token

Authorization Server

Access Token Table
Access Token identifier scope client_id ...

----------------- beizs| || |

Access Token Extra Data

identifier properties

POST /introspect HTTP/1.1
Host: server.example.com
Accept: application/json
Content-Type: application/x-www-form-urlencoded

Authorization: Basic czZCaGRSa3F0MzpnWDFmQOmFOM2JW

Hybrid token

Resource Server Authorization Server

The

introspection ©

Extract the Retrieve

token=mF_9.B5f-4.1JgM&token_type hint=access_token

Response from Introspection Endpoint (RFC 7662, Section 2.2)
HTTP/1.1 200 OK

Content-Type: application/json

DB

{

"active": true,

"client id": "12384323ds-23i34", request (1) access token information about
"username" : "jdoe", \ Call the introspection | from the request. | the access token
"scope": "read write dolphin", \ endpoint with the from the database.
"sub": "7Z503upPC88QrAjx00dis", \ access token.

"éud": ::https://protected.example.net/resource", _‘—> Introspection

nigse https://server.example.com/", .

"exp": 1419356238, Endpoint

siaris 1419350238, ‘,

"extension_field": "twenty-seven" Return the info

The Userinfo endpoint

From OpenlID Connect specification

* The response from a successful authentication is an IDToken
* It only proves authentication of a user with a given ID

* To obtain user information a request to a user info endpoint must be made
with an access token (obtained at the same time)

response_type=id_token token

| Authorization The access token should contain the userid in

Endpoint

\» ID Token

the ‘sub’ claim and possibly a ‘user’ or ‘username’ claim
The ‘scope’ claim must include “openid”

(L Access Token | The Userlnfo endpoint of the AuthN/AuthZ server is treated as

Token

Endpoint a Resource endpoint, so the access token is sent in the Authorization

header

~ Request:

' ' GET /userinfo HTTP/1.1

" Host: server.example.com
Accept: application/json

\ 4

Authorization: Bearer <access_token>

APM@FEUP

Sample response:
HTTP/1.12 200 OK
Content-type: application/json

{
“sub”: “9XE3-JI34-00132A",
“preferred_username”: “alice”,
“name”: “Alice Smith”,
“email”: “alice.smith@example.com”,
“email_verified”: true

Userinfo and Resource provider access

The access token returned by OAuth can grant access
» To the Userinfo endpoint on the AuthZ server itself

= To the Resource provider with the permissions granted to/by the user

Sometimes it is desirable to separate

= OpenlD Connect has a flow allowing that

response_type=code id_token token

Authorization

The access tokens here are different: Endpoint
The first can contain only the “openid” scope (and other g

related defined by the Openld specification) [DToken)

The second can contain only the scopes related to the -

resource provider 4

Token
Endpoint

APM@FEUP 21

Refresh tokens

Access tokens should be very short-lived

= A few minutes, allowing only a small number of requests

* When they expire a new one should be obtained

* To avoid a new authorization with user intervention, many
implementations return a refresh token, together with the access token

= Refresh tokens live a longer period (like an hour or more)

» They can be _ Refresh Token Flow (RFC 6749, 6)

Introspection Endpoint 9

~

| Access Token

Resource -+

® — (@ = Web API ca

used to get
another
access token —
App requests Service’s
token endpoint to re-
| Refresh Token | issue an access token.
Assuming that App has a refresh '
token which has been issued along ,’
with an access token as a result of an :
authorization request in the past “
1 ‘
Service issues @
an access token s
to App
APM@FEUP

© 2017 Authlete, Inc. https://www.authlete.com/

App and resource server authentication

IdP and AuthZ Servers need to recognize their clients

= Usually, they need to be registered previously
* There are standard protocols to register dynamically, or use some OOB way
* Either way they should be confirmed by an administrator

" In the registration a unique ID is assigned (e.g., a client_id property) and
also a shared secret (client_secret) or a pair of asymmetric keys

= All requests to AuthN/AuthZ servers must include authentication data

Client Application includes a client ID | Authorization Server
and a client secret
in a toke request

Common form of request authentication [l IR
(always using TLS) e

Token Endpoint
Token Request

Encode by BASE6G4

/Wl POST {Token Endpoint} HTTP/1.1 Y
W Host: {Authorization Server} v

Ml Authorization: Basic {BASE64-encoded Credentials}
ﬁ Content-Type: application/x-www-form-urlencoded

(abbrev)

APM@FEUP 23

App and resource server authentication (2)

= Another way is using a client assertion

Client Application

: "{Client ID}",

A JSON object is filled with client data

"sub": "{Client ID}",
"aud": " {Token Endpoint}",
---- "jtill: ||{JWT ID}",
R "exp": {Expiration Time},

: {Issuance Time}

Client Application Authorization Server

o Public Key [+---=--n-mnmmmmmmmcmnmmsmncnns oo ad
Itis S|gned, sent as a parameter,

and verified at the server with
A public key established at registration

-
——

Token Endpoint

Token Request

* The only unauthenticated request accepted should be the initial authorization request (starts the direct
dialog with user)

APM@FEUP pYA

Permissions and the scope claim

Oauth does not specify how to represent permissions

" |t specifies the ‘scope’ claim only as a list of words, space-separated

* The 'scope’ content can be requested by the app in the initial authorization
* It should be presented to and authorized by the user
* It should be checked by the AuthZ server, knowing the user and resource server
* The AuthZ server can grant all or only a subset of the requested ‘scope’ words
* It is included in the Token endpoint response, and in the access token
* It should be checked by the resource provider (it should also know the user)

Request to exchange a code by a token in the /token endpoint
Notice the code_verifier (PKCE) parameter

7/ 2 Client app should also authenticate with the server using one of the
previous methods

Successful response from the AuthZ server |§

APM@FEUP

" 4

Bearer vs PoP tokens

Client apps present access tokens to a resource provider
= Usually in the Authorization header as a Bearer token
* They are honored by the server (if valid), independently of the sender

» What if, from a server or app vulnerability, they are stolen?
* The resource and operation that they grant access, can also be stolen
* Bearer tokens are like cash, they grant access to who ever have them

= To protect against this possibility, we can use PoP tokens
* PoP = proof of possession

= With this kind of tokens, the resource provider should be able to check
that who sends them is the same app that has requested them
* The AuthZ server associates a key with each token when they are emitted

APM@FEUP 26

PoP tokens

The associated key is generated in the exchange of code

" |t can be generated in the client or AuthZ server, and can be symmetric
or asymmetric

Provided By:

Mot generally a good idea, since the client Good for constrained
could be choosing a weak secret, but clients or clients that
possible for clients with a Trusted Platform can't generate secure

Module or other mechanism capable of keys
generating truly secure shared keys

Key Type:
Good for clients that can generate secure Good for clients that
keys, minimizes the knowledge of client’s can't generate secure
private key; client registers public key only, keys; server generates
server returns public key only key pair, returns key pair

Asymmetric

= For a symmetric key both the client and server must know and store it
* The server can include it inside an encrypted JWT (a JWE)

= For asymmetric the server stores the public and the client both
* Again, the server can embed the public key in a JWE

APM@FEUP 27

PoP tokens generation phase

Resource Client

Dwner
Client requests

authorization fronm
MESOLUNOE OWWTer
—* — — — — —
Resource owner authenticates to
authorization server and authorizes dlient i
e o Aoy walid OBt
. i . . : rarmnt can
Authorization server issues authorization grant to g type
. - . be used here.
client to act on resource owner’s behalf

+ [] L] [—] — _— _— I
— - — — — +--
'y
Client sends ﬁ
authorization grant

o server with its K

own generated key
o=

Authorization
@ sErver retums a
token bound to

this key

Client provides key

.

Client sends -J

authorization grant
to server

T

Authorization server
generates key,
associates public
key or shared key
with token, retums
key to dient

Authorization server
generates key

Client stores token
and associated
key for use with

protected resource

APM@FEUP

PoP tokens use and verification
=N

Server
Client signs

request using the
token's key

Client sends sigmed request and
access token to protected resource @

Protected

NnEesoUnCe

looks up token

locally to R

find associated

(=1
=
i
[=1
=
™
=
—4

Structured
oken

Protected resource
makes inbrospection
request on acoess token

-l

Authorization servwer
returns token properties
and associated key

introspection

Walidate the

signature omn R
the request
Werify the
righits of the @
token

Protected resource
returms resource or ermor
as appropriate

APM@FEUP

Response from the token endpoint

If a PoP token is returned, and the server generated a key or
keys, the token endpoint response should include them

In the token endpoint request and response keys should be
transmitted using the JWK specification

= A JSON object different for each kind of key

= Example of a response containing a pair of RSA keys
* These keys are always ephemeral

APM@FEUM

Client app token preparation

The client app creates a JSON object containing

= The original token, a time stamp, and some HTTP request data

* Then this is used as a payload in a JWS token, signed with the
symmetric or private key, corresponding with the association in the
AuthZ server

eyJhbGci0iJSUzIINi1J9.eyJhdCI6ICI4dX10Z23Q2Nzg5MDQ5ZGFmc2RmMIM0ZzMiLCJ0cyI6IDMx
NjUzODMsImhOdHAiOnsidiI6I1BPUIQiLCJ1IjoibGY9jYWhvc3Q060TAWMIJ9fQo .m2NabCCbhyt
ObvmiWIgWB yJS5ETsmrB5uB hMu7a bWgn8UoLZxadN8s9]joIgfzVO9v1757DVMPFDIE2XWwlm
rfIKn6Epgjb5xPXxgcSJIJEYoJ1bkbIP1UQpHY8VRpvMcM1JB3LzpLUfe6zhPBxnnO4axKgcQE8S1
gXGvGAsPgcct92Xb76G04g3cDnEx hxX08XnUl2pniKW2C2vY4b5Yyqu-mrXbor2F4YkKkTkrkHH
GoFH4wophIRv3Ku8Gml MwhiIDAKPz3 1rRVP JkID9R40sKZOeBRcosVEW3MoPgcEL20XRrLh
YjJj9XMdXo8ayjz 6BaRIOVUW3RDuWHP9Dmg

= Finally, the token is sent to resource provider, in the Authorization
header

'ofF eyJhbGololosUzIiNigY . eydhdCIGICIAAXL0ZIQEINZgSMDOS. . .

APM@FEUP

31

PoP — Another way

To avoid the key generation and transmission

= We can use the Mutual TLS authentication feature and have a client
certificate and private key on the client app side

Client Application

’

Client Certificate i

* The server verifies the certificate and extracts the public key that it also
binds to the token
= The client uses the private key to sign the token

* The resource provider also receives the same certificate, and use it to verify the
token

= A disadvantage could be the use of the same key for several tokens

* Can be mitigated if the client app server, the AuthZ server, and the resource
provider share and trust the same private CA

» Make the client app generate a new certificate (in the CA) for each token it obtains

APM@FEUP 32

Web applications common attacks

OWASRP lists the top 10 web apps vulnerabilities and attacks
= The list is periodically renewed

= https://www.owasp.org/index.php/Category:OWASP Top Ten Project

= Complete characterization and countermeasures are included

OWASP Top 10 - 2013 OWASP Top 10 - 2017
A1 - Injection A1:2017-Injection
A2 — Broken Authentication and Session Management A2:2017-Broken Authentication
A3 — Cross-Site Scripting (XS5S) A3:2017-Sensitive Data Exposure
A4 — Insecure Direct Object References [Merged+A7]) A4:2017-XML External Entities (XXE) [NEW]
A5 — Security Misconfiguration A5:2017-Broken Access Control [Merged]

A6 — Sensitive Data Exposure A6:2017-Security Misconfiguration

AT —Missing Function Level Access Contr [Merged+=A4] |] A7:2017-Cross-Site Scripting (X55)

A8 — Cross-Site Request Forgery (CSRF) »| AB:2017-Insecure Deserialization [NEW, Community]
A9 — Using Components with Known Vulnerabilities A9:2017-Using Components with Known Vulnerabilities

A10 — Unvalidated Redirects and Forwards »| A10:2017 Insufficient Logging&Monitoring [NEW,Comm.]

2021
A01:2021-Broken Access Control
A02:2021-Cryptographic Failures
A03:2017-5ensitive Data Exposure A03:2021-Injection
AD4:2021-Insecure Design
A05:2021-Security Misconfiguration
y Misconfiguration A06:2021-Vulnerable and Outdated Components
i 5) A07:2021-ldentification and Authentication Failures
ur ria) AD8:2021-Software and Data Integrity Failures
017-Using Components with Known Vulnerabilities A09:2021-Security Logging and Monitoring Failures
A10:2017-Insufficient Logging & Monitoring A10:2021-Server-Side Request Forgery (SSRF)*

APM@FEUP * From the Survey

®

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

	Slide 1: Web Security
	Slide 2: Web applications and attack surface
	Slide 3: Security needs
	Slide 4: Cookie authentication
	Slide 5: Session hijacking
	Slide 6: Web authentication / authorization
	Slide 7: PIV – Personal Identity Verification
	Slide 8: Single-sign-on and federated authentication
	Slide 9: OAuth 2.0 Authorization Actors
	Slide 10: OAuth 2.0 authorization basic flow
	Slide 11: The authorization request
	Slide 12: OpenID Connect
	Slide 13: Protective implementation of OAuth
	Slide 14: OAuth code stolen protection
	Slide 15: OAuth code grant and token exchange
	Slide 16: Tokens
	Slide 17: JWT format with a signature (JWS)
	Slide 18: JWT with encryption (JWE)
	Slide 19: Opaque tokens and introspection
	Slide 20: The UserInfo endpoint
	Slide 21: UserInfo and Resource provider access
	Slide 22: Refresh tokens
	Slide 23: App and resource server authentication
	Slide 24: App and resource server authentication (2)
	Slide 25: Permissions and the scope claim
	Slide 26: Bearer vs PoP tokens
	Slide 27: PoP tokens
	Slide 28: PoP tokens generation phase
	Slide 29: PoP tokens use and verification
	Slide 30: Response from the token endpoint
	Slide 31: Client app token preparation
	Slide 32: PoP – Another way
	Slide 33: Web applications common attacks

