
Ciencia de Dados em Larga Escala, 23/24

Inês Dutra and Zafeiris Kokkinogenis

DCC-FCUP
room 1.31

ines@dcc.fc.up.pt
zafeiris.kokkinogenis@gmail.com

Feb 28th, 2024

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 1 / 46

Message Passing model

Very complex model
parallelism implemented by the programmer using language or system
calls
Explicit process communication
Synchronization associated with the messages
e.g.: SR and Occam (language), MPI (runtime library)

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 2 / 46

Message passing model

Proc pid:

chunk = N/NPROCS
for i = pid*chunk to (pid+1)*chunk-1

a[i] = 1
send(dest,&a[pid*chunk],chunk*sizeof(int))

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 3 / 46

Example: Successive Over Relaxation - SOR

Computing over a matrix
Group of consecutive lines per process
Each new cell value is calculated using neighbor cells
Communication on the borders

http://www2.phys.canterbury.ac.nz/dept/docs/manuals/Fortran-90/HTMLNotesnode193.html

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 4 / 46

http://www2.phys.canterbury.ac.nz/dept/docs/manuals/Fortran-90/HTMLNotesnode193.html

Example: SOR
Sequential

for num_iters
for num_linhas

compute

Shared memory

for num_iters
for num_linhas in //

compute

or

for num_iters
for num_minhas_linhas

compute
barreira

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 5 / 46

Example: SOR

Message passing with non-blocking send

define submatriz local
for num_iters

if pid != 0
send first line to process pid-1
receive last line from process pid-1

if pid != P-1
send last line to pid+1
receive first line from pid+1

for num_linhas
compute

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 6 / 46

Comparing models

Sequential ideal, but it depends on sophisticated software
Shared memory model yields simpler programs, but requires explicit
synchronization
Message passing yields efficient communication and implicit
synchronization, but it makes the programming model more difficult

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 7 / 46

SPMD vs. MPMD

Classification of programs
SPMD = data parallelism = program for SIMD running over MIMD
MPMD = task parallelism; example: master-slave

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 8 / 46

Classical topics in shared memory

Race conditions
when actions are not synchronized and behavior depends on their order
sometimes it does not cause problems. For example, master-slave or
task queue
in general, we want to avoid race conditions

Example that we need to prevent:

Proc 1 Proc 2
load X,reg load X,reg
inc reg inc reg
store reg,X store reg,X

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 9 / 46

Classical topics in shared memory

Synchronization
Used to avoid race conditions
two types: mutual exclusion and conditional sync
need atomic instructions
need to care to not over synchronize

Example of synchronization

Proc 1 Proc 2
mutex L mutex L
load X,reg load X,reg
inc reg inc reg
store reg,X store reg,X
demutex L demutex L

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 10 / 46

Synchronization

iteratively read a variable till some value: busy waiting
busy waiting spends precious processor cycles
sync needs to interact with the scheduler to block: semaphores and
monitors
Tradeoff: spin when waiting time is lower than the overhead of
rescheduling

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 11 / 46

Classical topics of message passing

blocking and non-blocking communication
Naming and collective communication
Messaging overhead

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 12 / 46

Blocking and non-blocking

blocking comm. does not require buffers
non-blocking communication → max concurrency; flow and error
problems
blocking send waits till receptor is ready
blocking receive waits till a message appears
non-blocking Send completes immediately, except when there is no
buffer
non-blocking Receive completes immediately even if there is nothing in
the buffer

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 13 / 46

Naming and Collective Communication

Channel, port, or process used to specify a receptor in a 1-to-1
communication
Other forms of communication for collective communication 1-to-many,
many-to-1 and many-to-many

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 14 / 46

Messaging Overhead

message passing generally costly (done in sw and with the intervention
of the OS)
Modern systems avoid calling the OS (only napping and verification of
protection)
Exs: Active msgs, Fast msgs

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 15 / 46

Data Parallelism

Decomposing and distributing data

P0 P1 P2 P3
x(1) x(4)

block x(2) x(5)
x(3)

P0 P1 P2 P3
y(1) y(2) y(3) y(4)

cyclic y(5) y(6)
y(9)

P0 P1 P2 P3
z(1) z(3) z(5)

cyclic z(2) z(4) z(6)
(2)

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 16 / 46

Data Parallelism

Different types of loops:
Array assignment – Ex: a(1:n) = b(0:n-1)*2 + c(2:n+1)

do (seq) – one iteration only starts after the previous one finishes
dopar (par) – iterations are executed by different processes/threads
and data is the same as when the loop started in each proc
doall (special dopar) – there are no dependencies between iterations
doacross (par) – there are dependencies and assignments of each
iteration will be seen by the others

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 17 / 46

Dependence Relations

Relations are used to represent ordering constraints between the
commands in a program
In the example below: Moving (2) above (1) or changing the order of
(3) and (4) modify the semantics. But changing the order of (2) and
(3) does not cause problems.

(1) A = 0
(2) B = A
(3) C = A + D
(4) D = 2

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 18 / 46

Dependence Relations

Data dependence graph: nodes = statements or blocks, edges = constraints
Constraints:

Flow dependence: variable assigned in a statement and used in the next
Anti-dep: variable used in a statement and assigned in the next
Output dependence: variable assigned in a statement and reassigned in
the next

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 19 / 46

Example

(1) A = 0 S1 --+
(2) B = A | |
(3) C = A+D V | flow
(4) D = 2 S2 |

|
S3 <-+
|
- anti
|
V
S4

precedence graph: directed acyclic

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 20 / 46

Dependence in sequential loops

loop-carried dependence: dependence between statements in different
loop iterations
loop independent dependence: dependence between statements of the
same iteration
Forward (backward) dependence: source precedes destination
(destination precedes source)

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 21 / 46

Example

(1) do I=2,9
(2) X[I] = Y[I] + Z[I]
(3) A[I] = X[I-1] + 1
(4) enddo

Dependence relations caused by X:

I=2 I=3
(2) X[2]=Y[2]+Z[2] X[3]=Y[3]+Z[3]
(3) A[2]=X[1]+1 A[3]=X[2]+1

Forward dep from (2) to (3):

S2
|
| (1)
V
S3

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 22 / 46

Iteration space

Graphically: 1 dot per iteration
Directed edge if the command of one iteration depends on the previous
iteration (dependence graph)
Graph difficult to build because dependencies can become crossed in
space

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 23 / 46

Example

(1) do I=3,7
(2) do J=6,2 by -2
(3) A[I,J] = A[I,J+2] + 1
(4) enddo
(5) enddo

J
ˆ
|

6 | * * * * *
| | | | | |

5 | | | | | |
| V V V V V

4 | * * * * *
| | | | | |

3 | | | | | |
| V V V V V

2 | * * * * *
|

1 |
|

0 +------------------------------- > I
0 1 2 3 4 5 6 7

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 24 / 46

Dependence in parallel loops

Two statements or iterations are in conflict when they may refer to the
same memory address
Conflicts need to be solved so that semantics is correct
List of statements: conflicts solved completing first memory access
before initiating the second access: conflicts solved as anti-dependences
Loop: conflict solved according to loop rules

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 25 / 46

Dependende among parallel loops

do: conflicts between iterations are solved completing the memory
access of the previous iteration first
dopar: values computed in one iteration can not be used by other
iteration → conflicts solved as anti-dependencies or output
dependencies
doall: there are no dependencies between iterations → conflicts solved
as if loops are independent

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 26 / 46

Example

(1) dopar I=2,20
(2) X[I] = Y[I] + 1
(3) Z[I] = X[I-1] + X[I] + X[I+1]
(4) enddopar

I=2 I=3
(2) X[2]=Y[2]+1 X[3]=Y[3]+1
(3) Z[2]=X[1]+X[2]+X[3] Z[3]=X[2]+X[3]+X[4]

flow dependency between (2) and (3), distance (0) - X[I]
Anti-dep between iterations with distance (-1) and (1) - X[I-1], X[I+1]

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 27 / 46

Loop restructuring

Reorder statements and iterations, but preserving semantics

Techniques:

Peeling

Splitting

Scalar expansion

Fusion

Fission

Interchanging

Strip mining

Tiling

Unrolling

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 28 / 46

Peeling

Isolate 1st or last iterations from the remaining
Often used to adjust number of iterations (to allow for fusion, for example)
or to remove a condition tested on an index

Before: do I=1,N
A[I] = (X + Y) * B[I]

enddo

After: if N >= 1 then
A[1] = X + Y * B[1]
do I=2,N

A[I] = X + Y * B[I]
enddo

endif

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 29 / 46

Splitting
Divide set of indice in two subsets
Used by the same reasons as peeling

Before: do I=1,100
A[I] = B[I] + C[I]
if I > 10 then

D[I] = A[I] + A[I-10]
endif

enddo

After: do I=1,10
A[I] = B[I] + C[I]

enddo
do I=11,100

A[I] = B[I] + C[I]
D[I] = A[I] + A[I-10]

enddo
Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 30 / 46

Scalar Expansion, Fusion, Fission, Interchanging

SE: scalars become arrays to prevent anti-deps and output
dependencies
Fusion: join 2 loops of same limits in just one loop. Used to reduce
costs of branch and test instructions, to improve temporal locality and
allow for scalar optimizations such as elimination of subexpressions in
mathematical calculations
Fission: opposite of fusion. Used to improve cache hit ratios
Interchanging: change nested loops. Used to reduce the cost os
starting loops, to help uncovering automatic parallelism (move loops
without dependencies inside the main loop) and improve temporal and
spatial locality

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 31 / 46

Strip Mining

Convert one loop in two nested loops
Used to improve data locality

Before: do I=1,N
A[I] = B[I] + C[I]

enddo

After (strip of size s):
do Is=1,N by s

do I=Is,min(N,Is+s-1)
A[I] = B[I] + C[I]

enddo
enddo

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 32 / 46

Tiling and Unrolling

Tiling: similar to strip mining, but with nested loops. Used to created
blocked versions of code with better data locality
Unrolling: Used to increase amount of instruction parallelism

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 33 / 46

Work distribution

Master/slave paradigm: main part of code executed by just one
process (master - controller)
When parallel region is reached, master creates multiple slaves
When slaves finish execution synchronize using a barrier

Implementation:
Slaves: processes or threads?
Should Master participate of the parallel execution?
Or should it be doing some distinct work?
Does last slave in the barrier become master?

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 34 / 46

Scheduling

Static: N/P consecutive iterations per slave (blocks) or one iteration
per slave (round-robin or cyclic).
Static scheduling does not work well when there is load imbalance
Dynamic:
I Self-scheduling: each slave takes a task from a queue
I Guided self-scheduling: 1/P tasks each time
I Affinity scheduling: each slave continues executing iterations that has

executed before (parallel loop inside sequential loop)

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 35 / 46

Synchronization

Needed whenever there is dependence between iterations or tasks
Implemented through ordered critical sections (CS)
Processes enter CS in order
Implemented using primitives await and advance

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 36 / 46

Example

do I=2,n
D[I] = D[I-1] + A[I]

enddo

Each slave:

await(I-1) await and advance can be
fetch D[I-1]->r1 implemented in different forms.
fetch A[I]->r2 e.g., bit vector (1 per iteration);
add r1, r2->r3 advance sets i-th bit,
store r3->D[I] await waits till
advance (i-1)-th bit is set (atomic operation).

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 37 / 46

Python multiprocessing.Pool

synchronous: parent process blocks and only proceeds to the next
statement after the call finishes: pool.apply, pool.map,
pool.starmap, pool.imap, pool.imap unordered

asynchronous: parent process proceeds as soon as the call executes:
pool.apply async, pool.map async, pool.starmap async

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 38 / 46

Python multiprocessing.Pool

(source: superfastpython.com cheat sheet for multiprocessing.Pool)
multiprocessing.Pool execute functions that perform CPU-bound tasks
asynchronously in new child processes

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 39 / 46

superfastpython.com

Python multiprocessing.Pool

Create, configure and use
I Import module

from multiprocessing import Pool
I Create default config

pool = Pool()
I Config number of workers

pool = Pool(processes=8)
I Config worker initializer function

pool = Pool(initializer=init, initargs=(a1,a2,...,))
I Config max tasks per child worker

pool = Pool(maxtasksperchild=10)

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 40 / 46

Python multiprocessing.Pool

Create, configure and use
I Config multiprocessing context

ctx = get context(’spawn’)
pool = Pool(context=ctx)

I Close after tasks finish, prevent further tasks
pool.close()

I Terminate, kill running tasks
pool.terminate()

I Join, after close, wait for workers to stop
pool.join()

I Context manager, terminate automatically
with Pool() as pool:

...

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 41 / 46

Issue tasks synchronously

Issue tasks, block until complete
I Issue one task

value = pool.apply(task, (a1,a2))
I Issue many tasks, one argument/iterable

for val in pool.map(task, items):
...

I Issue many tasks, lazy
for val in pool.imap(task, items):

...
I Issue many tasks, lazy, unordered results

for val in pool.imap unordered(task, items):
...

I Issue many tasks, multiple arguments/iterables
items = [(1,2), (3,4), (5,6)]
for val in pool.starmap(task, items):

...

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 42 / 46

Issue tasks Asynchronously

Issue tasks, return control to parent process immediately
I Issue one task

value = pool.apply async(task, (a1,a2))
I Issue many tasks, only one argument/iterable for the target function

for val in pool.map async(task, items):
...

I Issue many tasks, multiple arguments/iterables for the target function
items = [(1,2), (3,4), (5,6)]
for val in pool.starmap asynch(task, items):

...

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 43 / 46

Chunksize

All versions of map() functions
for val in pool.map(task, items, chunksize=5):

...

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 44 / 46

Results

Get result (blocking)
result = value.get()

Get result with exception
try:

result = value.get()
except Exception as e:

...

Get result with timeout
result = value.get(timeout=5) # 5 seconds

for all asynch functions: apply callback to collect results

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 45 / 46

Wait and task status

Wait for task to complete
value.wait()

Wait for task, with timeout
value.wait(timeout=5)

Check if task is finished (not running)
if value.ready():

...

Check if task was successful (no exception)
if value.successful():

...

Inês Dutra and Zafeiris Kokkinogenis (DCC-FCUP room 1.31 ines@dcc.fc.up.ptzafeiris.kokkinogenis@gmail.com)CDLE Feb 28th, 2024 46 / 46

	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming

