lencia de Dados em Larga £scala, 4

Inés Dutra and Zafeiris Kokkinogenis

DCC-FCUP
room 1.31
ines@dcc.fc.up.pt
zafeiris.kokkinogenis@gmail.com

Feb 28th, 2024

Synchronous Asynchronous

20 seconds.

20 seconds.
7 seconds

7 seconds.
10 seconds

Number of tasks

10 seconds
8 seconds

Number of tasks

8 seconds

Total time taken by the tasks.

Total time taken by the tasks.
0 seconds

45 seconds

Feb 28th, 2024

Inés Dutra and Zafeiris Kokkinogenis (DCC-F

Message Passing model

Very complex model

parallelism implemented by the programmer using language or system
calls

Explicit process communication

Synchronization associated with the messages

e.g.: SR and Occam (language), MPI (runtime library)

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 2/46

Message passing model

Proc pid:

chunk N/NPROCS
for i = pid*chunk to (pid+1)*chunk-1
ali] =1
send (dest,&a[pid*chunk] , chunk*sizeof (int))

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 3/46

Example: Successive Over Relaxation - SOR

Computing over a matrix
Group of consecutive lines per process

Each new cell value is calculated using neighbor cells

Communication on the borders

a{ig)
;
;

’
a(i-1.3) N

a(ig-1) a(ig+1)

ali+1.j)

http://www2.phys.canterbury.ac.nz/dept/docs/manuals/Fortran-90/HTMLNotesnode193.html

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

http://www2.phys.canterbury.ac.nz/dept/docs/manuals/Fortran-90/HTMLNotesnode193.html

Example: SOR

Sequential

for num_iters
for num_linhas
compute

Shared memory

for num_iters
for num_linhas in //
compute

or

for num_iters
for num_minhas_linhas
compute
barreira

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 5/46

Example: SOR

Message passing with non-blocking send

define submatriz local
for num_iters
if pid !'= 0
send first line to process pid-1
receive last line from process pid-1
if pid != P-1
send last line to pid+1l
receive first line from pid+1
for num_linhas
compute

Inés Dutra and Zafeiris Kokkinogenis (DCC-F

Feb 28th, 2024 6/46

Comparing models

@ Sequential ideal, but it depends on sophisticated software

@ Shared memory model yields simpler programs, but requires explicit
synchronization

@ Message passing yields efficient communication and implicit
synchronization, but it makes the programming model more difficult

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 7/46

SPMD vs. MPMD

o Classification of programs
@ SPMD = data parallelism = program for SIMD running over MIMD

@ MPMD = task parallelism; example: master-slave

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 8/46

Classical topics in shared memory

Race conditions
@ when actions are not synchronized and behavior depends on their order

@ sometimes it does not cause problems. For example, master-slave or
task queue

@ in general, we want to avoid race conditions

Example that we need to prevent:

Proc 1 Proc 2
load X,reg load X,reg
inc reg inc reg
store reg,X store reg,X

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 9/46

Classical topics in shared memory

Synchronization
@ Used to avoid race conditions
@ two types: mutual exclusion and conditional sync
@ need atomic instructions
@ need to care to not over synchronize

Example of synchronization

Proc 1 Proc 2
mutex L mutex L
load X,reg load X,reg
inc reg inc reg
store reg,X store reg,X
demutex L demutex L

Inés Dutra and Zafeiris Kokkinogenis (DCC-F

Feb 28th, 2024 10/ 46

Synchronization

o iteratively read a variable till some value: busy waiting

@ busy waiting spends precious processor cycles

@ sync needs to interact with the scheduler to block: semaphores and
monitors

@ Tradeoff: spin when waiting time is lower than the overhead of
rescheduling

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 11/46

Classical topics of message passing

@ blocking and non-blocking communication
@ Naming and collective communication

@ Messaging overhead

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 12 /46

Blocking and non-blocking

@ blocking comm. does not require buffers

@ non-blocking communication — max concurrency; flow and error
problems

@ blocking send waits till receptor is ready
@ blocking receive waits till a message appears

@ non-blocking Send completes immediately, except when there is no
buffer

@ non-blocking Receive completes immediately even if there is nothing in
the buffer

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 13 /46

Naming and Collective Communication

@ Channel, port, or process used to specify a receptor in a 1-to-1
communication

@ Other forms of communication for collective communication 1-to-many,
many-to-1 and many-to-many

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 14 /46

Messaging Overhead

@ message passing generally costly (done in sw and with the intervention
of the OS)

@ Modern systems avoid calling the OS (only napping and verification of
protection)

@ Exs: Active msgs, Fast msgs

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 15 /46

Data Parallelism

Decomposing and distributing data

PO P1

x(1) x(4)

block x(2) x(5)
x(3)

PO P1

y(1) y(2)

cyclic y(5) y(6)
y(9)

PO P1

z(1) z(3)

cyclic z(2) z(4)

(2)

P2

P2
y(3)

P2
z(5)
z(6)

P3

P3
y(4)

P3

Inés Dutra and Zafeiris Kokkinogenis (DCC-F

Feb 28th, 2024

Data Parallelism

Different types of loops:

Array assignment — Ex: a(1:n) = b(0:n-1)*2 + c(2:n+1)
do (seq) — one iteration only starts after the previous one finishes

dopar (par) — iterations are executed by different processes/threads
and data is the same as when the loop started in each proc

doall (special dopar) — there are no dependencies between iterations

doacross (par) — there are dependencies and assignments of each
iteration will be seen by the others

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 17 /46

Dependence Relations

@ Relations are used to represent ordering constraints between the
commands in a program

@ In the example below: Moving (2) above (1) or changing the order of
(3) and (4) modify the semantics. But changing the order of (2) and
(3) does not cause problems.

1) A=0
(2) B=4A
(3) C=A+D
(4) D=2

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 18 /46

Dependence Relations

Data dependence graph: nodes = statements or blocks, edges = constraints
Constraints:

@ Flow dependence: variable assigned in a statement and used in the next
@ Anti-dep: variable used in a statement and assigned in the next

@ Output dependence: variable assigned in a statement and reassigned in
the next

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 19 /46

(1) A=0 S1 ——+
(2) B=A I I
(3) C = A+D v | flow
(4) D=2 S2 I
|
S3 <—+
I
- anti
I
v
S4

precedence graph: directed acyclic

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 20 /46

Dependence in sequential loops

@ loop-carried dependence: dependence between statements in different
loop iterations

@ loop independent dependence: dependence between statements of the
same iteration

e Forward (backward) dependence: source precedes destination
(destination precedes source)

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 21 /46

(1) do I=2,9

(2) X[1I] = Y[1] + Z[1I]
(3) A[I] = X[I-1] + 1
(4) enddo

Dependence relations caused by X:

I=2 I=3
(2) X[2]=Y[2]+Z[2] XI[3]=Y[3]+Z[3]
(3) A[2]=X[1]+1 A[3]=X[2]+1

Forward dep from (2) to (3):

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

lteration space

@ Graphically: 1 dot per iteration

@ Directed edge if the command of one iteration depends on the previous
iteration (dependence graph)

@ Graph difficult to build because dependencies can become crossed in
space

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 23 /46

Example

(1) do I=3,7
(2) do J=6,2 by -2
(3 A[I,J] = A[1,J+2] + 1
(4) enddo
(5) enddo
|
6 | * * * * *
| | | | | |
5 | | | | | |
| v Vv Vv VvV Vv
4 | * * * * *
| | | | | |
3 | | | | | |
| v v Vv Vv Vv
2 | * * * * *
|
1|
|
o + > 1
0 1 2 3 4 5 6 7

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 24 / 46

Dependence in parallel loops

@ Two statements or iterations are in conflict when they may refer to the
same memory address

@ Conflicts need to be solved so that semantics is correct

@ List of statements: conflicts solved completing first memory access
before initiating the second access: conflicts solved as anti-dependences

@ Loop: conflict solved according to loop rules

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 25 /46

Dependende among parallel loops

@ do: conflicts between iterations are solved completing the memory
access of the previous iteration first

@ dopar: values computed in one iteration can not be used by other
iteration — conflicts solved as anti-dependencies or output
dependencies

@ doall: there are no dependencies between iterations — conflicts solved
as if loops are independent

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 26 / 46

(1) dopar I=2,20

(2) X[1] = Y[1] +1

(3) Z[I] = X[I-1] + X[I] + X[I+1]
(4) enddopar

I=2 I=3
(2) X[2]=Y[2]+1 X[3]=Y[3]+1
(3) Z[2]=X[1]+X[2]1+X[3] Z[3]=X[2]+X[3]+X[4]

flow dependency between (2) and (3), distance (0) - X[I]
Anti-dep between iterations with distance (-1) and (1) - X[I-1], X[I+1]

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 27 / 46

Loop restructuring

Reorder statements and iterations, but preserving semantics

Techniques:
@ Peeling
@ Splitting
@ Scalar expansion
@ Fusion
@ Fission
@ Interchanging
@ Strip mining
@ Tiling

@ Unrolling

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 28 /46

Isolate 1st or last iterations from the remaining
Often used to adjust number of iterations (to allow for fusion, for example)
or to remove a condition tested on an index

Before: do I=1,N
A[I] = (X + Y) * BI[I]
enddo

After: if N >= 1 then
A[1] = X + Y = B[1]
do I=2,N
A[I] = X + Y * B[I]
enddo
endif

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

Splitting

Divide set of indice in two subsets
Used by the same reasons as peeling

Before: do I=1,100
A[I] = B[I] + C[1]
if I > 10 then
D[I] = A[I] + A[I-10]
endif
enddo

After: do I=1,10
A[1] = B[I] + C[I]
enddo
do I=11,100
A[I] = B[I] + C[I]
D[I] = A[I] + A[I-10]
enddo

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

Scalar Expansion, Fusion, Fission, Interchanging

@ SE: scalars become arrays to prevent anti-deps and output
dependencies

@ Fusion: join 2 loops of same limits in just one loop. Used to reduce
costs of branch and test instructions, to improve temporal locality and
allow for scalar optimizations such as elimination of subexpressions in
mathematical calculations

o Fission: opposite of fusion. Used to improve cache hit ratios

@ Interchanging: change nested loops. Used to reduce the cost os
starting loops, to help uncovering automatic parallelism (move loops
without dependencies inside the main loop) and improve temporal and
spatial locality

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 31/46

Strip Mining

Convert one loop in two nested loops
Used to improve data locality

Before: do I=1,N
A[I] = B[I] + C[I1]
enddo

After (strip of size s):
do Is=1,N by s
do I=Is,min(N,Is+s-1)
A[1] = B[I] + C[1]
enddo
enddo

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

Tiling and Unrolling

o Tiling: similar to strip mining, but with nested loops. Used to created
blocked versions of code with better data locality

@ Unrolling: Used to increase amount of instruction parallelism

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 33 /46

Work distribution

@ Master/slave paradigm: main part of code executed by just one
process (master - controller)

@ When parallel region is reached, master creates multiple slaves

@ When slaves finish execution synchronize using a barrier
Implementation:

@ Slaves: processes or threads?

@ Should Master participate of the parallel execution?
@ Or should it be doing some distinct work?
o

Does last slave in the barrier become master?

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 34 /46

Scheduling

e Static: N/P consecutive iterations per slave (blocks) or one iteration
per slave (round-robin or cyclic).

@ Static scheduling does not work well when there is load imbalance

@ Dynamic:
» Self-scheduling: each slave takes a task from a queue
> Guided self-scheduling: 1/P tasks each time
» Affinity scheduling: each slave continues executing iterations that has
executed before (parallel loop inside sequential loop)

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 35 /46

Synchronization

Needed whenever there is dependence between iterations or tasks
Implemented through ordered critical sections (CS)

Processes enter CS in order

Implemented using primitives await and advance

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 36 /46

do I=2,n
D[I] = D[I-1] + A[I]
enddo

Each slave:

await(I-1) await and advance can be

fetch D[I-1]->r1 implemented in different forms.

fetch A[I]->r2 e.g., bit vector (1 per iteration);

add r1, r2->r3 advance sets i-th bit,

store r3->D[I] await waits till

advance (i-1)-th bit is set (atomic operation).

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 37 /46

Python multiprocessing.Pool

@ synchronous: parent process blocks and only proceeds to the next
statement after the call finishes: pool.apply, pool.map,
pool.starmap, pool.imap, pool.imap_unordered

@ asynchronous: parent process proceeds as soon as the call executes:
pool.apply_async, pool.map_async, pool.starmap_async

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 38 /46

Python multiprocessing.Pool

(source: superfastpython.com cheat sheet for multiprocessing.Pool)

@ multiprocessing.Pool execute functions that perform CPU-bound tasks
asynchronously in new child processes

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 39 /46

superfastpython.com

Python multiprocessing.Pool

o Create, configure and use

» Import module
from multiprocessing import Pool
> Create default config
pool = Pool()
» Config number of workers
pool = Pool(processes=8)
» Config worker initializer function
pool = Pool(initializer=init, initargs=(al,a2,...,))
» Config max tasks per child worker
pool = Pool(maxtasksperchild=10)

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 40 /46

Python multiprocessing.Pool

@ Create, configure and use

» Config multiprocessing context
ctx = get_context(’spawn’)
pool = Pool(context=ctx)

» Close after tasks finish, prevent further tasks
pool.close()

» Terminate, kill running tasks
pool.terminate ()

» Join, after close, wait for workers to stop
pool.join()

» Context manager, terminate automatically
with Pool() as pool:

...

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 41/46

Issue tasks synchronously

@ Issue tasks, block until complete

>

>

Issue one task

value = pool.apply(task, (al,a2))

Issue many tasks, one argument/iterable

for val in pool.map(task, items):
...

Issue many tasks, lazy

for val in pool.imap(task, items):
...

Issue many tasks, lazy, unordered results

for val in pool.imap_ unordered(task, items):
...

Issue many tasks, multiple arguments/iterables

items = [(1,2), (3,4), (5,6)]

for val in pool.starmap(task, items):
...

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 42 /46

Issue tasks Asynchronously

@ Issue tasks, return control to parent process immediately

> Issue one task
value = pool.apply_async(task, (al,a2))
> Issue many tasks, only one argument/iterable for the target function
for val in pool.map_async(task, items):
...
> Issue many tasks, multiple arguments/iterables for the target function
items = [(1,2), (3,4), (5,6)]
for val in pool.starmap-asynch(task, items):
...

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 43 /46

Chunksize

@ All versions of map() functions
for val in pool.map(task, items, chunksize=5):
#

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024 44 / 46

@ Get result (blocking)
result = value.get()

@ Get result with exception
try:
result = value.get()
except Exception as e:
#

@ Get result with timeout
result = value.get(timeout=5) # 5 seconds

o for all asynch functions: apply callback to collect results

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

Wait and task status

@ Wait for task to complete
value.wait ()

o Wait for task, with timeout
value.wait (timeout=>5)

o Check if task is finished (not running)
if value.ready():
...

@ Check if task was successful (no exception)
if value.successful():
...

Inés Dutra and Zafeiris Kokkinogenis (DCC-F Feb 28th, 2024

	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming
	Recalling Topics on Parallel Programming

