
Ciência de Dados em Larga Escala

Inês Dutra and Zafeiris Kokkinogenis

DCC-FCUP
room 1.31

ines@dcc.fc.up.pt
zafeiris.kokkinogenis@gmail.com

23/24



MapReduce model

(Based on MapReduce: Simplified Data Processing on Large Clusters)

▶ Motivation: need for many computations over large/huge sets
of data

▶ Computations can be done in parallel

▶ Complex to manage: race conditions, debugging, data
distribution, fault-tolerance, load balancing etc

https://dl.acm.org/doi/10.1145/1327452.1327492


MapReduce model

Abstraction that allows to express simple computations but hiding
the messy details of parallelization, fault-tolerance, data
distribution and load balancing

programming model + library



MapReduce example: word count

map(String key, String value):

// key: document name

// value: document contents

for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):

// key: a word

// values: a list of counts

int result = 0;

for each v in values:

result += ParseInt(v);

Emit(key, AsString(result));



MapReduce example: word count

In general:

▶ Map task: a single pair → a list of intermediate pairs
map(input-key,input-value) → list(out-key, intermediate-value)
⟨ki , vi ⟩ → {kint , vint}

▶ Reduce task: all intermediate pairs with the same kint → a list
of values
reduce(out-key, list(intermediate-value)) → list(out-values)
⟨kint , {vint}⟩ → ⟨ko , vo⟩



MapReduce: how does it work?

HDFS: Hadoop Distributed File System. It can also use GFS, the Google File

System



MapReduce

▶ User specifies:
▶ M: number of map tasks
▶ R: number of reduce tasks

▶ Map:
▶ MapReduce lib splits the input file into M pieces
▶ Typically 16-64 MB per piece
▶ Map tasks are distributed across the machines

▶ Reduce:
▶ Partitioning the intermediate key space into R pieces
▶ hash(intermediate key) mod R

▶ Typical setting:
▶ 2,000 machines
▶ M = 200,000
▶ R = 5,000



MapReduce: fault-tolerance

▶ Worker failures:
▶ identified by sending heartbeat messages by the master. If no

response within a certain amount of time, then the worker is
dead

▶ in-progress and completed map tasks are rescheduled (map
output is stored locally)

▶ in-progress reduce tasks are rescheduled (reduce output is
stored in GFS)

▶ Master failure:
▶ Rare
▶ Can be recovered from checkpoints?
▶ Aborts the MapReduce computation and starts again



Disk locality

▶ GFS stores typically three copies of the data block in different
machines

▶ Map tasks are scheduled close to data
▶ on nodes that have input data (local disk)
▶ if not, on nodes that are nearer to input data (e.g., same

switch)



Task granularity

▶ Number of map tasks > number of worker nodes
▶ better load balancing
▶ better recovery

▶ but...increases master load
▶ more scheduling
▶ more states to be saved

▶ M could be chosen according to file system block size

▶ R is usually specified by the user (each reduce task produces
one output file)



Stragglers

▶ Slow workers (stragglers) delay overall computation

▶ Very close to the end of the MapReduce operation, master
schedules backup execution (redundancy) of the in-progress
tasks

▶ A task is marked as complete whenever either the primary or
the backup execution completes

▶ Google reports average improvement in job response times by
44%!

▶ Strategy may not work well if cluster is heterogeneous



MapReduce in a little more detail

Barrier may become a problem in the context of redundant (backup) tasks and

heterogeneous clusters. Scheduler assumptions are broken.



Scheduler’s Assumptions

▶ Nodes can perform work at roughly the same rate

▶ Tasks progress at constant rate all the time

▶ There is no cost to starting a speculative task

▶ A task’s progress is roughly equal to the fraction of its total
work

▶ Tasks tend to finish in waves, so a task with a low progress
score is likely a slow task

▶ Different tasks of the same category (maps or reduces) take
roughly the same amount of work



Scheduling in MapReduce

▶ When a node has an empty slot, Hadoop chooses one from
the three categories in the following priority:

1. A failed task
2. Unscheduled tasks. For maps, tasks with local data to the

node are chosen first.
3. Speculative task (backup execution)



Deciding on speculative tasks

▶ Which task to execute speculatively?

▶ Hadoop monitors tasks progress using a progress score: a
number in the interval [0,1] that measures each task’s
progress compared with the average progress

▶ For mappers: the score is the fraction of input data read
▶ For reducers: the execution is divided into three equal phases,

1
3 of the score each:
▶ Copy phase: percentage of maps that output has been copied

from
▶ Sort phase: percentage of data merged
▶ Reduce phase: percentage of data passed through the reduce

function
Example1: 1/2*1/3, progress score of a task halfway through
the copy phase
Example2: 1/3 + 1/3 + 1/2*1/3 = 5/6, progress score of a
task halfway through the reduce phase



Deciding on speculative tasks

▶ Based on average progress of each category and threshold:
When a task’s progress is less than the average for its
category minus 0.2, and the task has run at least one minute,
it is marked as a straggler:
threshold = avgProgress – 0.2

▶ All tasks with progress score < threshold are stragglers

▶ Ties are broken by data locality

▶ This approach works reasonably well in homogeneous clusters



Improvement

▶ progress rate instead of progress score values

▶ backup tasks with low progress rate that are “far enough”
below the mean

progress rate =
progress score

execution time



Tutorial

MapReduce tutorial Hadoop 3.3.6

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html

