Ciéncia de Dados em Larga Escala

Inés Dutra and Zafeiris Kokkinogenis

DCC-FCUP
room 1.31
ines@dcc.fc.up.pt
zafeiris.kokkinogenis@gmail.com

23/24

SoarK



Apache Spark 2.0

(Based on book Learning Spark 2.0)

v

v

unified engine for large-scale distributed data processing
on-premises in data centers or in the cloud

provides in-memory storage for intermediate computations
(faster than Hadoop)

incorporates libraries with composable APIs for machine
learning (MLlIib)

SQL for interactive queries (Spark SQL)
stream processing (Structured Streaming)

graph processing (GraphX)


https://pages.databricks.com/rs/094-YMS-629/images/LearningSpark2.0.pdf

Apache Spark history

» Both Hadoop and Spark are distributed systems that let you
process data at scale. They can recover from failure if data
processing is interrupted for any reason.

P> To store, manage, and process big data, Apache Hadoop
separates datasets into smaller subsets or partitions. It then
stores the partitions over a distributed network of servers.
Likewise, Apache Spark processes and analyzes big data over
distributed nodes to provide business insights.

» Apache Spark relies on a special data processing technology
called Resilient Distributed Dataset (RDD). With RDD,
Apache Spark remembers how it retrieves specific information
from storage and can reconstruct the data if the underlying
storage fails.



Spark components

Apache Spark runs with the following components:

» Spark Core coordinates the basic functions of Apache Spark.
These functions include memory management, data storage,
task scheduling, and data processing.

» Spark SQL allows you to process data in Spark’s distributed
storage.

» Spark Streaming and Structured Streaming allow Spark to
stream data efficiently in real time by separating data into
tiny continuous blocks.

» Machine Learning Library (MLIib) provides several machine
learning algorithms that you can apply to big data. GraphX
allows you to visualize and analyze data with graphs.



YARN

| 2

Apache Hadoop YARN is the resource management and job
scheduling technology in the open source Hadoop distributed
processing framework. One of Apache Hadoop's core
components, YARN is responsible for allocating system
resources to the various applications running in a Hadoop
cluster and scheduling tasks to be executed on different
cluster nodes.

YARN stands for Yet Another Resource Negotiator, but it's
commonly referred to by the acronym alone; the full name
was self-deprecating humor on the part of its developers. The
technology became an Apache Hadoop subproject within the
Apache Software Foundation (ASF) in 2012 and was one of
the key features added in Hadoop 2.0, which was released for
testing that year and became generally available in October
2013.



YARN

| 2

The addition of YARN significantly expanded Hadoop's
potential uses. The original incarnation of Hadoop closely
paired the Hadoop Distributed File System (HDFS) with the
batch-oriented MapReduce programming framework and
processing engine, which also functioned as the big data
platform’s resource manager and job scheduler. As a result,
Hadoop 1.0 systems could only run MapReduce applications —
a limitation that Hadoop YARN eliminated.

Before getting its official name, YARN was informally called
MapReduce 2 or NextGen MapReduce. But it introduced a
new approach that decoupled cluster resource management
and scheduling from MapReduce’s data processing
component, enabling Hadoop to support varied types of
processing and a broader array of applications. For example,
Hadoop clusters can now run interactive querying, streaming
data and real-time analytics applications on Apache Spark and
other processing engines simultaneously with MapReduce
batch jobs.



Apache Spark main characteristics

speed
ease of use

modularity

vvvyyy

extensibility



Apache Spark components and architecture

v

Spark Application

Spark Executor
Spark Driver 4———> | Cluster Manager

~—
)
© core Spark Executor
Fioure 1-4. Apache Spark components and architecture




Apache Spark components and architecture

» Spark application: driver program responsible for orchestrating
parallel operations on the Spark cluster

» Spark driver: responsible for instantiating a SparkSession,
with roles:

>
>

>

communicates with the cluster manager

requests resources (CPU, memory, etc.) from the cluster
manager for Spark’s executors (JVMs)

transforms all the Spark operations into DAG computations
schedules them, and distributes their execution as tasks across
the Spark executors

once the resources are allocated, it communicates directly with
the executors



Apache Spark components and architecture

» Spark session: unifies all Spark operations and data

> Aggregates previous Spark 1.0 versions of entry points such as
SparkContext, SQLContext, HiveContext, SparkConf and
SreamingContext

» User can:

>

>
>
>
>

create JVM runtime parameters
define DataFrames and Datasets
read from data sources

access catalog metadata

issue Spark SQL queries



Apache Spark components and architecture

Spark session example in Scala

/7 In 5cala
import org.apache.spark.sql.SparkSession

/7 Build SparkSession

val spark = SparkSession
.builder
.appName("LearnSpark™)
.config("spark.sql.shuffle.partitions”, 6)
.getOrCreate()

/7 Use the session to read JSON
val people = spark.read.json("...")

// Use the session to issue a SQL query
val resultsDF = spark.sql("SELECT city, pop, state, zip FROM table_name")



Apache Spark components and architecture

» Cluster manager: responsible for managing and allocating
resources for the cluster of nodes on which your Spark
application runs

» Support for:

» built-in standalone cluster manager
» Apache Hadoop YARN

» Apache Mesos

» Kubernetes



Apache Spark components and architecture

» Spark executor: runs on each worker node
» communicate with the driver program

> responsible for executing tasks on the workers
(most deployment models run only a single executor per node)



A data sharing abstraction

» Resilient Distributed Dataset (RDD): data sharing abstraction
for fault-tolerant, parallel data structures

» RDD allows a user to keep intermediate results and optimizes
their placement in the memory of a large cluster
» Data storage in memory significantly improves performance

» The write bandwidth throughput for both hard disks and
solid-state disks is three orders of magnitude lower than the
memory bandwidth

» Only the random access latency of solid-state disks is much
lower than the latency of hard disks, their sequential I/O
bandwidth is not larger

» The RDD user interface exposes:

» Partitions, atomic pieces of the dataset.

» Dependencies on parent RDD.

» A function for constructing the dataset.

» Metadata about data location.



