
Programming with Apache Beam, pipelines and stream
data

April 16, 2024

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 1 / 32

Basics of Apache Beam

Material taken from apache beam documentation

Pipeline: graph of transformations
PCollection: data being processed
PTransforms: operations on PCollections
SDK: language (in our case, Python)
Runner: takes a beam pipeline and executes it

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 2 / 32

https://beam.apache.org/documentation/

Basics of Apache Beam: PTransform

PTransforms can be one of the 5 primitives:
▶ Read: parallel conectors to external systems
▶ ParDo: per element processing
▶ GroupByKey: aggregating elements
▶ Flatten: union of PCollections
▶ Window: set the windowing strategy for a PCollection

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 3 / 32

Basics of Apache Beam: PCollections

may be:
▶ Bounded: finite, as in batch use cases
▶ Unbounded: it may be infinite, as in streaming use cases

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 4 / 32

Basics of Apache Beam: Timestamps

Every element in a PCollection has a timestamp associated with it
If elements denote events, timestamps are important
In case the timestamp is not important it is set to “negative infinity”

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 5 / 32

Basics of Apache Beam: Watermarks

Estimates how complete a PCollection is
The contents of a PCollection are complete when a watermark
advances to “infinity”
→ this way we know that an unbounded PCollection is finite (has
ended)

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 6 / 32

Basics of Apache Beam: Windowed elements

Windows define the size (number of elements) that will be processed in
the pipeline at once
When elements are read from external sources they arrive in the global
window
When they are written to the outside world, they are placed back into
the global window
→ any writing transform that doesn’t obey it may risk data loss
A window has a maximum timestamp
All data related to an expired window may be discarded at any time

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 7 / 32

Basics of Apache Beam: Coder

Specifies the binary format of the elements of a PCollection
Can be just bytes or some encoding system (for example, graphical
accents, depending on the language)

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 8 / 32

Basics of Apache Beam: Windowing strategy

Specify essential information for grouping and triggering operations
→ operate on a one-by-one element basis may be very inefficient,
depending on the operation
For example, GroupByKey is governed by a windowing strategy

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 9 / 32

Basics of Apache Beam: User defined functions (UDF)

beam pipeline may contain UDFs different from the current runner
DoFn: per-element processing function (used in ParDo)
WindowFn: places elements in windows and merges windows (used in
Window and GroupByKey)
ViewFn: adapts a PCollection to a particular interface
WindowMappingFn: maps one element’s window to another, and
specifies bounds on how far in the past the result window will be
CombineFn: associative and commutative aggregation (used in
Combine and state)
Coder: encodes user data

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 10 / 32

Basics of Apache Beam: Runner

is used for a couple of things
it generally refers to the software that takes a beam pipeline and runs it
it usually includes some customized operators for your data processing
engine and it sometimes refers to the full stack
a runner has a single method run(pipeline)
run(pipeline) methods should be asynchronous and result in a
PipelineResult which is a job descriptor. It provides methods:
▶ for checking job status
▶ canceling
▶ waiting for termination

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 11 / 32

Apache Beam: Execution model

(https://beam.apache.org/documentation/runtime/model/)
runners can execute a pipeline in different ways
Processing of elements:
▶ serialization1 and communication between machines is one of the most

expensive operations
▶ avoiding serialization may require re-processing elements after failures or

may limit the distribution of output to other machines

1process of translating a data structure to be stored or transmitted
Programming with Apache Beam, pipelines and stream dataApril 16, 2024 12 / 32

https://beam.apache.org/documentation/runtime/model/

Apache Beam: Serialization and Communication

runner may serialize elements between machines for communication or
persistence
runner may decide transfer elements between transforms in a variety of
ways:
▶ grouping operation: may involve serializing elements and grouping or

sorting them by key
▶ redistributing elements between workers to adjust parallelism
▶ using elements in a side input to a ParDo: may require serializing the

elements and broadcasting them to all workers executing the ParDo
▶ passing elements between transforms that are running on the same

worker

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 13 / 32

Apache Beam: Bundling and persistence

situations for persistence: stateful app or checkpointing
elements of a PCollection are processed in “bundles”
▶ runner chooses appropriate middle-ground between persisting results
▶ for example, streaming runnners may prefer to process and commit small

bundles, while a batch runner may prefer to process larger bundles

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 14 / 32

Failures and parallelism within and between transforms

When executing a single ParDo, a runner might divide an example input
collection of 9 elements into two bundles

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 15 / 32

Failures and parallelism within and between transforms

Parallelism within transform: when the ParDo executes, workers can process
bundles in parallel

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 16 / 32

Failures and parallelism within and between transforms

Dependent parallelism between transforms:

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 17 / 32

Failures and parallelism within and between transforms

If processing of an element within a bundle fails, the entire bundle fails
The elements in the bundle must be retried, otherwise the entire
pipeline fails
but they do not need to be retried in the same worker

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 18 / 32

Failures and parallelism within and between transforms

Failures within one transform: input collection with 9 elements, divided in
two bundles. First run: worker 2 fails element 3 of its bundle B and worker
1 succeeds with its bundle A. Retry: worker 1 retries all bundle B and
succeeds.

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 19 / 32

Failures and parallelism within and between transforms
Failures between transforms (in this case: coupled failure): worker 1
succeeds processing bundle A and produces bundle C which is input to
another ParDo. Worker 2 failed processing bundle D, therefore the input
used to produce bundle D (bundle B) needs to be recomputed. Therefore a
full recomputation of B and D needs to be done.

Notice that keeping bundles A-C, B-D in the same worker makes the
processing more efficient.

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 20 / 32

Pipeline development lifecycle

What to consider in the design?
Where is your input data stored?
→ will define what kind of Read transform to use
What does your data look like?
→ will define which transform to apply and allow for more efficient
data handling
What do you want to do with your data?
→ will define the transformations, functions etc that you want to apply
to your data
What does your output data look like and where should it go?
→ will define what kind of Write transform to use

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 21 / 32

Basic Pipeline example

[Final Output PCollection] = ([Initial Input PCollection]
| [First Transform]
| [Second Transform]
| [Third Transform])

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 22 / 32

Branching PCollections

[PCollection of database table rows] = [Database Table Reader] |
[Read Transform]

[PCollection of ’A’ names] = [PCollection of database table rows] |
[Transform A]

[PCollection of ’B’ names] = [PCollection of database table rows] |
[Transform B]

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 23 / 32

Producing multiple outputs (1)

results = (
words
| beam.ParDo(ProcessWords(), cutoff_length=2,

marker=’x’).with_outputs(
’above_cutoff_lengths’,
’marked strings’,
main=’below_cutoff_strings’))

below = results.below_cutoff_strings
above = results.above_cutoff_lengths
marked = results[’marked strings’] # indexing works as well

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 24 / 32

Producing multiple outputs (2)

OR...

below, above, marked = (
words
| beam.ParDo(ProcessWords(), cutoff_length=2,

marker=’x’).with_outputs(
’above_cutoff_lengths’,
’marked strings’,
main=’below_cutoff_strings’))

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 25 / 32

Producing multiple outputs (3)

What does ProcessWords do?

class ProcessWords(beam.DoFn):
def process(self, element, cutoff_length, marker):

if len(element) <= cutoff_length:
Emit this short word to the main output.
yield element

else:
Emit this word’s long length to the ’above_cutoff_lengths’ output.
yield pvalue.TaggedOutput(’above_cutoff_lengths’, len(element))

if element.startswith(marker):
Emit this word to a different output with the ’marked strings’ tag.
yield pvalue.TaggedOutput(’marked strings’, element)

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 26 / 32

Modifying a pipeline to use stream processing

Material from beam python streaming

You need to make the following code changes:
use an I/O connector that supports reading from an unbounded source
→ ReadFromText and others do not support unbounded sources!
use an I/O connector that supports writing to an unbounded source
choose a windowing strategy

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 27 / 32

https://beam.apache.org/documentation/sdks/python-streaming/

Modifying a pipeline to use stream processing

beam SDK for python includes 2 of these I/O connectors: Google
Cloud PubSub (reading and writing) and Google BigQuery (writing)
changing code for counting words:

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 28 / 32

Modifying a pipeline to use stream processing

Material from quickstart Google pubsub

to run a streaming pipeline you must create input and output topics
(channels) in the Google Cloud Pub/Sub
authenticate to the GCP first
to create a channel called my-topic:
gcloud pubsub subscriptions create my-sub --topic=my-topic

send a msg:
gcloud pubsub topics publish my-topic --message="hello"

receive the msg:
gcloud pubsub subscriptions pull my-sub --auto-ack

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 29 / 32

https://cloud.google.com/community/tutorials/pubsub-quickstart

Example

Material from python streaming with GCP

Sending text through channel my-topic

cat amazon_review_polarity_csv/train.csv |
while read line
do

gcloud pubsub topics publish \
my-topic --message "$line" --limit 30

done

receiving text (open in another shell)
gcloud pubsub subscriptions pull my-sub --auto-ack

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 30 / 32

https://beam.apache.org/documentation/sdks/python-streaming/

Modifying a pipeline to use stream processing
GCP provides a guide to implement stream processing using Pub/Sub
(see here)
communication can be one-to-many (fan-out), many-to-one (fan-in)
and many-to-many

image source: GCP Pub/Sub
Programming with Apache Beam, pipelines and stream dataApril 16, 2024 31 / 32

https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub#integration-features
https://cloud.google.com/pubsub/docs/overview

Pub/Sub

GCP provides various streaming templates that can export Pub/Sub
data to different destinations:
▶ Pub/Sub subscription to BigQuery
▶ Pub/Sub to Pub/Sub relay
▶ Pub/Sub to Cloud Storage Avro
▶ Pub/Sub to Cloud Storage Text
▶ Storage Text to Pub/Sub (Stream)

(for templates, see here)

Programming with Apache Beam, pipelines and stream dataApril 16, 2024 32 / 32

https://cloud.google.com/dataflow/docs/concepts/streaming-with-cloud-pubsub#integration-features

	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Basics of Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam
	Apache Beam

