Parallel computing in Python using Dask, Modin and

Joblib

April 16, 2024

7/ DASK £ MoDIN QJoinb

Parallel computing in Python using Dask, Mo April 16, 2024

Material taken from Dask documentation and other links (indicated as
appropriate)

@ flexible library for parallel computing in Python

@ it is implemented on top of multiprocessing and multithreading
@ Composed of two parts:

» dynamic task scheduling optimized for interactive computational
workloads

> big data collections: parallel arrays, dataframes and lists (extends
common interfaces like numpy, pandas or iterators)

Parallel computing in Python using Dask, Mo April 16, 2024

https://docs.dask.org/en/latest/

@ Advantages:

>
|
>

vVvyvyy

Familiar: provides parallelized numpy array and pandas dataframe objects
Flexible: provides a task scheduling interface

Native: enables ditributed computing in pure Python with access to the
PyData stack

Fast: low overhead, low latency, and minimal serialization

Scales up: runs on clusters with 1000s of cores

Scales down: can trivially run in a laptop using a single process
Responsive: designed for interactive computing, providing rapid feedback

Parallel computing in Python using Dask, Mo April 16, 2024 3/31

Dask vs. PySpark

In general, Dask is smaller and lighter weight than Spark

@ It has fewer features and, instead, is used in conjunction with other
libraries, particularly those in the numeric Python ecosystem

It couples with libraries like Pandas or Scikit-Learn

Spark is written in Scala and supports various languages, dask is
written in Python and only supports Python

specifically, PySpark runs on JVM

Parallel computing in Python using Dask, Mo April 16, 2024 4/31

General overview of Dask components

Schedulers
(execute task graphs)

Collections

— Task Graph ——
(create task graphs)

Dask Array
Dask DataFrame Single-machine
(threads, processes,
synchronous)
Dask Bag
Distributed
Dask Delayed

Futures

Dask will run in a single machine, but if using dask.distributed, it will

create processes in several machines
Parallel computing in Python using Dask, Mo April 16, 2024 5/31

Dask familiar user interface: dataframe example

import pandas as pd import dask.dataframe as dd
df = pd.read_csv('2815-01-81.csv') df = dd.read_csv('2015-*-*.csv"')
df.groupby(df.user_id).value.mean() df .groupby(df.user_id).value.mean().compute()

Parallel computing in Python using Dask, Mo April 16, 2024

Dask familiar user interface: numpy example

impert numpy as np import dask.array as da

f = hspy.File('myfile.hdf5"') f = h5py.File('myfile.hdf5"')

x = np.array(f['/small-data']) x = da.from_array(f['/big-data'],
chunks=(1860, 1000))

X - X.mean(axis=1) X - xX.mean(axis=1).compute()

chunks tell dask.array how to break up the underlying array into chunks
(refer to Dask chunks documentation)

Parallel computing in Python using Dask, Mo April 16, 2024

https://docs.dask.org/en/latest/array-chunks.html

Dask familiar user interface: numpy example

import dask.array as da
x = da.ones((15, 15), chunks=(5, 5))

y = x +x.T

y.compute()
y.visualize(filename='transpose.svg')

Cald# L b 20

A -
(aat) (aaa)

PR
a2 - =L
you , Py

/ / A\ y
a0, 0.0 T | N e e
- /
(/ I I / ‘ : / L
e T
; | A ™

P 1
p s TN | - N -
\m\) (an) (mm) () s) f/aw%\ / ml\ [gm\)
i \T/\ \ J/ R A N -
? N S S e
\ N . A . \
\ | ~ 1 / | ~ \
| ‘ Clanspose-42, 0,00 ‘-'u:mmm—!z.u.m |wnw:d A0, nl Clranspase 42,0, z\‘ ‘\wﬁmu:d—ﬂ 0. ” (transpose 42,1, n‘ ‘wm«wxr‘z Y ‘umm.!—m' 1 z\‘ I ‘Hrm.\w;c w.an
|‘ /,I, ‘\ /i, \ \‘ L L 1 : f
' \ - A s \ A - -
“.‘ rgm/ \ mm) (m) | () (DOERICOERICS (=) | (e)
| Ny— \ N \

\ N VNS \ N, VN
\ \ / \ f \ / \Y \\. f
Cwrapped-#1°.0,0) (wrapped-#1°,1.0) Cwrapped-#1,2.0) Cwrapped-#1.1,1) (Wrapped-#1°.2. 1) Cnrapped-#1.2.2)
T 1 i pi
(' =))

() (s (s (o)
\Z/ \Z S —/ N N

—
/

.
N

Parallel computing in Python using Dask,

Dask familiar user interface: iterators, Toolz and PySpark

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()

Parallel computing in Python using Dask, Mo April 16, 2024

Dask familiar user interface: for loop and custom code

from dask import delayed

L =[]

for fn in filenames:
data = delayed(load)(fn)
L.append(delayed(process)(data))

result = delayed(summarize)(L)
result.compute()

April 16, 2024

Dask familiar user interface: futures

from dask.distributed import Client
client = Client('scheduler:port')

futures = []

for fn in filenames:
future = client.submit(load, Tn)
futures.append(future)

summary = client.submit(summarize, futures)
summary.result()

Parallel computing in Python using Dask, Mo April 16, 2024

Dask familiar user interface: futures

@ Client is needed to use with future interfaces
from dask.distributed import Client
client = Client() # start local workers as processes

or
client = Client(processes=False) # start local workers as threads

Parallel computing in Python using Dask, Mo April 16, 2024

Dask distributed

o If you create a Client without providing an address it will start up a
local scheduler and worker

@ Dask distribute allows you to manage clusters
python -m pip install dask distributed —--upgrade

% dask-scheduler
Scheduler started at 127.0.0.1:8786

$ dask-worker 127.8.0.1:8786
$ dask-worker 127.8.0.1:8786
% dask-worker 127.8.0.1:8786

»>> from dask.distributed import Client
==» client = Client('127.0.06.1:8786"')

Parallel computing in Python using Dask, Mo April 16, 2024

Dask task graphs

Dask encodes programs as dictionaries or similar, which are represented as
graphs

def inc(i):
return i + 1

def add(a, b):
return a + b

x =1
y = inc(x) d={x":1,
_ 'y't (inc, 'x'),
z = add(y, 18) 201 (add, 'y', 19)}

Parallel computing in Python using Dask, Mo April 16, 2024

Dask dataframes

Material from Dask dataframe doc

@ Dask dataFrame: used usually when Pandas fails due to data size or
computation speed:
» Manipulating large datasets, even when those datasets don't fit in

memory
» Accelerating long computations by using many cores
» Distributed computing on large datasets with standard pandas
operations like groupby, join, and time series computations

April 16, 2024 15/31

Parallel computing in Python using Dask, Mo

https://docs.dask.org/en/latest/dataframe.html

Dask dataframes

@ Dask dataFrame may not be the best choice in the following situations:

> If the dataset fits into RAM

> If the dataset doesn't fit into the pandas tabular model (in that case if
the data fits, you may use dask.bag or dask.array)

» |f you need functions that are not implemented in Dask dataFrame

» If you need database optimized operations

Parallel computing in Python using Dask, Mo April 16, 2024 16 /31

Dask dataframe example

January, 2016 \
February, 2016 } szﬁdze
Dask
March, 2016 > Dataframe

April, 2016

May, 2016)

Parallel computing in Python using Dask, Mo April 16, 2024

Dask dataframes and pandas

@ Trivially parallelizable operations: element-wise, row-wise, loc,
aggregations, etc

o Cleverly parallelizable operations: groupby (agg and index), counts,
drop_duplicates, merge etc

Parallel computing in Python using Dask, Mo April 16, 2024

Dask dataframes and pandas

@ Dask does not implement all pandas interface
@ Some limitations:

>
>

>

setting a new index from an unsorted column is expensive

operations like groupby-apply and join on unsorted columns require
setting the index, which as said above, is expensive

operations that are slow in pandas, like iterating row-by-row will remain
slow in dask

Parallel computing in Python using Dask, Mo April 16, 2024 19/31

Dask dataframes overheads

@ A note on GIL (Global Interpreter Lock):

» pandas is more GIL bound than numpy, therefore operations on dask
arrays should be faster than operations on dask dataframes

Parallel computing in Python using Dask, Mo April 16, 2024

>>> from dask_glm.datasets import make classification
>=> X, y = make_classification()

»»> 1r = LogisticRegression()

3= 1r.Tit(X, y)

»»» 1r.decision_function(X)

>z 1r.predict(X)

>>> 1r.predict_proba(X)

>»> 1r.score(X, y)

from dask_ml.xgboost import XGBRegressor

est = XGBRegressor(...)
est.fit(train, train_labels)

Parallel computing in Python using Dask, Mo

April 16, 2024

Modin documentation in github
Modin documentation in readthedocs

Scale your pandas workflows by changing one line of code! (is this serious??

)

import pandas as pd
import modin.pandas as pd

==es MODIN

Parallel computing in Python using Dask, Mo April 16, 2024

22/31

https://github.com/modin-project/modin
https://modin.readthedocs.io/en/latest/

pip install modin[ray] # Install Modin dependencies and Ray to rum on Ray
pip install modin[dask] # Install Modin dependencies and Dask to run on Dask
pip install modin[all] # Install all of the above

Parallel computing in Python using Dask, Mo April 16, 2024

Modin

Q: What is Modin?
A: An alternative to handle 100GB or 1TB datasets not supported by pandas

Top 20 Most Used Pandas methods in Kaggle
From the top 1800 upvoted scripts and notebooks in Kaggle

1500
1000

500

Number of times used

0

O N & 4® S S S S
A N > O 7 ol @'
¥ ST ST T
& B & & > o &
PO 9 & g
& &

Pandas operation
Pandas implemented functions from Kaggle's most used

Source: https://towardsdatascience.com/how-to-speed-up-pandas-with-modin-84aa6a87bcdb

Parallel computing in Python usi

https://towardsdatascience.com/how-to-speed-up-pandas-with-modin-84aa6a87bcdb

Modin's Ray Engine Medin's Dask Engine Modin's Unidist Engine
Coverage Coverage Coverage

pandas Object

pd.DataFrame

pd.Series Sl
pd.read_csv
pd.read_table
pd.read_parquet
pd.read_sql
pd.read_feather
pd.read excel
pd.read_json ﬁ Q ;
pd.read_<other> * * *

Source: https://github.com/modin-project/modin?tab=readme-ov-file#pandas-api-coverage

rallel computing in Python using Dask, Mo

https://github.com/modin-project/modin?tab=readme-ov-file#pandas-api-coverage

Modin abstract architecture

APIs

Query
Compiler

Middle
Layer

Execution

pandas |id

wSQl_iw

(Experimental)

e

=8 MODIN API
(Coming Soon™)

TEme®

=== MODIN Query Compiler

==¢c MODIN

DataFrame

77?
Bring your
Distributed
DataFrame

o3» RAY | /7//DASK | @ python |,

77
ring your backend

Source: https://modin.readthedocs.io/en/stable/development/architecture.html

Parallel computing in Python using Dask, Mo

April 16, 2024

26 /31

https://modin.readthedocs.io/en/stable/development/architecture.html

Modin execution engines

Parallel and Distribued
Dataframe System
Allows u through Pandas
APl

Uses Task/Actor Uses Task Model Uses Task Model
Model i ,

Source: https://modin.readthedocs.io/en/stable/development/architecture.html

Parallel computing in Python using Dask, Mo April 16, 2024

https://modin.readthedocs.io/en/stable/development/architecture.html

Modin details for Ray execution

Dataframe Partitions.
IPiasma Stoage]

from external

Stores indices for the dataframe
soul partitc able '

nodes/

Tifatrame b

Source: https://modin.readthedocs.io/en/stable/development/architecture.html

arallel computing

https://modin.readthedocs.io/en/stable/development/architecture.html

Joblib

Joblib

Parallel computing in Python using Dask, Mo April 16, 2024 29/31

Joblib

@ Transparent and fast disk-caching
@ Embarrassingly parallel

@ Fast compressed Persistence

Parallel computing in Python using Dask, Mo April 16, 2024

Joblib

Switching different Parallel Computing Back-ends:
@ "loky”
@ "multiprocessing”
@ "threading”

@ "dask”

Parallel computing in Python using Dask, April 16, 2024

	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask basics
	Dask dataframes
	Dask dataframes
	Dask dataframes
	Dask dataframes
	Dask dataframes
	Dask dataframes
	Dask dataframes
	Modin
	Modin
	Modin
	Modin
	Modin
	Modin
	Modin
	Joblib
	Joblib
	Joblib

