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Material taken from Dask documentation and other links (indicated as
appropriate)

@ flexible library for parallel computing in Python

@ it is implemented on top of multiprocessing and multithreading
@ Composed of two parts:

» dynamic task scheduling optimized for interactive computational
workloads

> big data collections: parallel arrays, dataframes and lists (extends
common interfaces like numpy, pandas or iterators)
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https://docs.dask.org/en/latest/

@ Advantages:

>
|
>

vVvyvyy

Familiar: provides parallelized numpy array and pandas dataframe objects
Flexible: provides a task scheduling interface

Native: enables ditributed computing in pure Python with access to the
PyData stack

Fast: low overhead, low latency, and minimal serialization

Scales up: runs on clusters with 1000s of cores

Scales down: can trivially run in a laptop using a single process
Responsive: designed for interactive computing, providing rapid feedback
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Dask vs. PySpark

In general, Dask is smaller and lighter weight than Spark

@ It has fewer features and, instead, is used in conjunction with other
libraries, particularly those in the numeric Python ecosystem

It couples with libraries like Pandas or Scikit-Learn

Spark is written in Scala and supports various languages, dask is
written in Python and only supports Python

specifically, PySpark runs on JVM
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General overview of Dask components

Schedulers
(execute task graphs)

Collections

— Task Graph ——
(create task graphs)

Dask Array
Dask DataFrame Single-machine
(threads, processes,
synchronous)
Dask Bag
Distributed
Dask Delayed

Futures

Dask will run in a single machine, but if using dask.distributed, it will

create processes in several machines
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Dask familiar user interface: dataframe example

import pandas as pd import dask.dataframe as dd
df = pd.read_csv('2815-01-81.csv') df = dd.read_csv('2015-*-*.csv"')
df.groupby(df.user_id).value.mean() df .groupby(df.user_id).value.mean().compute()
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Dask familiar user interface: numpy example

impert numpy as np import dask.array as da

f = hspy.File('myfile.hdf5"') f = h5py.File('myfile.hdf5"')

x = np.array(f['/small-data']) x = da.from_array(f['/big-data'],
chunks=(1860, 1000))

X - X.mean(axis=1) X - xX.mean(axis=1).compute()

chunks tell dask.array how to break up the underlying array into chunks
(refer to Dask chunks documentation)
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https://docs.dask.org/en/latest/array-chunks.html

Dask familiar user interface: numpy example

import dask.array as da
x = da.ones((15, 15), chunks=(5, 5))

y = x +x.T

# y.compute()
y.visualize(filename='transpose.svg')
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Dask familiar user interface: iterators, Toolz and PySpark

import dask.bag as db
b = db.read_text('2015-*-*.json.gz').map(json.loads)
b.pluck('name').frequencies().topk(10, lambda pair: pair[1]).compute()
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Dask familiar user interface: for loop and custom code

from dask import delayed

L =[]

for fn in filenames:
data = delayed(load)(fn)
L.append(delayed(process)(data))

result = delayed(summarize)(L)
result.compute()
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Dask familiar user interface: futures

from dask.distributed import Client
client = Client('scheduler:port')

futures = []

for fn in filenames:
future = client.submit(load, Tn)
futures.append(future)

summary = client.submit(summarize, futures)
summary.result()
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Dask familiar user interface: futures

@ Client is needed to use with future interfaces
from dask.distributed import Client
client = Client() # start local workers as processes

# or
client = Client(processes=False) # start local workers as threads
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Dask distributed

o If you create a Client without providing an address it will start up a
local scheduler and worker

@ Dask distribute allows you to manage clusters
python -m pip install dask distributed —--upgrade

% dask-scheduler
Scheduler started at 127.0.0.1:8786

$ dask-worker 127.8.0.1:8786
$ dask-worker 127.8.0.1:8786
% dask-worker 127.8.0.1:8786

»>> from dask.distributed import Client
==» client = Client('127.0.06.1:8786"')
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Dask task graphs

Dask encodes programs as dictionaries or similar, which are represented as
graphs

def inc(i):
return i + 1

def add(a, b):
return a + b

x =1
y = inc(x) d={x":1,
_ 'y't (inc, 'x'),
z = add(y, 18) 201 (add, 'y', 19)}
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Dask dataframes

Material from Dask dataframe doc

@ Dask dataFrame: used usually when Pandas fails due to data size or
computation speed:
» Manipulating large datasets, even when those datasets don't fit in

memory
» Accelerating long computations by using many cores
» Distributed computing on large datasets with standard pandas
operations like groupby, join, and time series computations
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https://docs.dask.org/en/latest/dataframe.html

Dask dataframes

@ Dask dataFrame may not be the best choice in the following situations:

> If the dataset fits into RAM

> If the dataset doesn't fit into the pandas tabular model (in that case if
the data fits, you may use dask.bag or dask.array)

» |f you need functions that are not implemented in Dask dataFrame

» If you need database optimized operations
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Dask dataframe example

January, 2016 \
February, 2016 } szﬁdze
Dask
March, 2016 > Dataframe

April, 2016

May, 2016 )
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Dask dataframes and pandas

@ Trivially parallelizable operations: element-wise, row-wise, loc,
aggregations, etc

o Cleverly parallelizable operations: groupby (agg and index), counts,
drop_duplicates, merge etc
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Dask dataframes and pandas

@ Dask does not implement all pandas interface
@ Some limitations:

>
>

>

setting a new index from an unsorted column is expensive

operations like groupby-apply and join on unsorted columns require
setting the index, which as said above, is expensive

operations that are slow in pandas, like iterating row-by-row will remain
slow in dask
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Dask dataframes overheads

@ A note on GIL (Global Interpreter Lock):

» pandas is more GIL bound than numpy, therefore operations on dask
arrays should be faster than operations on dask dataframes
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>>> from dask_glm.datasets import make classification
>=> X, y = make_classification()

»»> 1r = LogisticRegression()

3= 1r.Tit(X, y)

»»» 1r.decision_function(X)

>z 1r.predict(X)

>>> 1r.predict_proba(X)

>»> 1r.score(X, y)

from dask_ml.xgboost import XGBRegressor

est = XGBRegressor(...)
est.fit(train, train_labels)
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Modin documentation in github
Modin documentation in readthedocs

Scale your pandas workflows by changing one line of code! (is this serious??

)

# import pandas as pd
import modin.pandas as pd

==es MODIN
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https://github.com/modin-project/modin
https://modin.readthedocs.io/en/latest/

pip install modin[ray] # Install Modin dependencies and Ray to rum on Ray
pip install modin[dask] # Install Modin dependencies and Dask to run on Dask
pip install modin[all] # Install all of the above
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Modin

Q: What is Modin?
A: An alternative to handle 100GB or 1TB datasets not supported by pandas

Top 20 Most Used Pandas methods in Kaggle
From the top 1800 upvoted scripts and notebooks in Kaggle
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Pandas operation
Pandas implemented functions from Kaggle's most used

Source: https://towardsdatascience.com/how-to-speed-up-pandas-with-modin-84aa6a87bcdb
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https://towardsdatascience.com/how-to-speed-up-pandas-with-modin-84aa6a87bcdb

Modin's Ray Engine Medin's Dask Engine Modin's Unidist Engine
Coverage Coverage Coverage

pandas Object

pd.DataFrame

pd.Series Sl
pd.read_csv
pd.read_table
pd.read_parquet
pd.read_sql
pd.read_feather
pd.read excel
pd.read_json ﬁ Q ;
pd.read_<other> * * *

Source: https://github.com/modin-project/modin?tab=readme-ov-file#pandas-api-coverage
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Modin abstract architecture

APIs

Query
Compiler

Middle
Layer

Execution

pandas |id

wSQl_iw

(Experimental)

e

=8 MODIN API
(Coming Soon™)

TEme®

=== MODIN Query Compiler

==¢c MODIN

DataFrame

77?
Bring your
Distributed
DataFrame

o3» RAY | /7//DASK | @ python |,

77
ring your backend

Source: https://modin.readthedocs.io/en/stable/development/architecture.html
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https://modin.readthedocs.io/en/stable/development/architecture.html

Modin execution engines

Parallel and Distribued
Dataframe System
Allows u through Pandas
APl

Uses Task/Actor Uses Task Model Uses Task Model
Model i ,

Source: https://modin.readthedocs.io/en/stable/development/architecture.html
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Modin details for Ray execution

Dataframe Partitions.
IPiasma Stoage]

from external

Stores indices for the dataframe
soul partitc able '

nodes/

Tifatrame b

Source: https://modin.readthedocs.io/en/stable/development/architecture.html
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Joblib

Joblib
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Joblib

@ Transparent and fast disk-caching
@ Embarrassingly parallel

@ Fast compressed Persistence
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Joblib

Switching different Parallel Computing Back-ends:
@ "loky”
@ "multiprocessing”
@ "threading”

@ "dask”
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