
Software Security
Engineering Components

SECU RE SOF T WA RE EN G INEERI N G

AP M @F EU P

A Simple Software Development Process

APM @ FEUP 2

Idea

Deployment

Implementation

Testing

Design

Security Tasks Incorporation

APM @ FEUP 3

Idea Implementation
Design

Security Requirements
Security Policies

Threat Modeling

System Architecture

Security Mechanisms

Readiness

Static Analysis
Dynamic Analysis
Fuzz Testing
Manual Code Review

Security Design
Principles

Avoid Common Weaknesses
Secure Code Standards

In case of failure Application code

Security Policy and Mechanism
Policy
 A statement of what is, and is not, allowed

Mechanism
 a procedure, tool, or method of enforcing a policy

Security mechanisms also can implement functions that help
prevent, detect, respond, and recover from security attacks

Many security functions on systems are typically made
available to users as a set of security services through APIs or
integrated interfaces, used by several applications

Cryptography underlies many of the security mechanisms

APM @ FEUP 4

Some Security Mechanisms
Authentication
 assurance that the communicating entity is the one that it claims to be

Access Control
 prevention of the unauthorized use of a resource

Data Confidentiality
 protection of data from unauthorized disclosure

Data Integrity
 assurance that data received is not modified and is as sent by an

authorized entity

Non-Repudiation
 protection against denial by one of the parties in a communication

(origin or destination)

APM @ FEUP 5

Some Security Services
Specific
 Encipherment
 Digital signature
 Access control
 Data integrity
 Authentication exchange

• Ensure the identity of an entity using
message exchange

 Traffic padding
• Insertion of arbitrary bits in messages

to frustrate traffic analysis

 Routing control
• Select physically secure routers and

allow route changes when a breach is
suspected

 Notarization
• Use of a trusted third party

APM @ FEUP 6

Pervasive
 Trusted functionality

• Established by a security policy

 Security label
• Marking resources with security

attributes

 Event detection
• Detection of security related

events

 Security audit trail
• Collection of data to facilitate

auditing

 Security recovery
• Takes recovery actions when

solicited by other security
mechanisms

The Security Life Cycle

APM @ FEUP 7

Threat
discovery Policy

Specification

Design
Implementation

Testing

Operation

Assurance

System analysis

Desired functions
/ Mechanisms

Security
rules

Set of
components /
Services

Realization
satisfying the
design

Inspection
Proofs
Continuous Testing

Normal
functioning

Requirements

Threat Modeling in a Nutshell

Threat Modeling is a fundamental component of
 Building security in
 Security by design
 Shifting security left (in the development process)

• Should be included as early as possible

APM @ FEUP 8

Diagram

Identify
Threats

Mitigate

Validate

Vision

Identify Threats
 Several methodologies have been proposed
 Most common one is STRIDE (focused on CIA)
 Other comprise

• PASTA – Process for Attack Simulation and Threat Analysis (risk-centric
methodology)

• LINDDUN – An approach including systematic privacy threats, not so focused
on the CIA
(linkability, identifiability, non-repudiation, detectability, disclosure,
unawareness, non-compliance)

• INCLUDES NO DIRT (STRIDE + LINDDUN + CO) (Clinical error, Overuse)

 Identification
 For each entry determine how adversaries can attempt to affect assets
 For every asset, predict what adversaries can try and their goals

Analysis
 Decompose threats into individual actions building an attack tree
 Evaluate the risk of the threat

APM @ FEUP 9

Identify threats
Answers to questions like
 Can an unauthorized network user view confidential data like addresses

or passwords ? How ?

 Can an unauthorized user modify data like payments, purchases in a
database, or create them ? How ?

 Could someone deny legitimate users, access to the application ? How ?

 Could an authorized user exploit an application feature to raise their
privilege to a higher role (e.g., an administrator) ? How ?

Use databases of known attacks and categories to identify
your threats
 CAPEC – Common Attack Pattern Enumeration and Classification

• https://capec.mitre.org

 ATT&CK – adversary tactics and techniques based on real world
observation
• https://attack.mitre.org

APM @ FEUP 10

STRIDE
 The STRIDE security threat model should be used by all products to identify various

types of threats the product is susceptible to during the design phase. Threats are
identified based on the design of the product

APM @ FEUP 11

ExampleDefinitionPropertyThreat

Pretending to be a legitimate user, or server
on the system, or a system update file

Impersonating something
or someone else.

AuthenticationSpoofing

Modifying a configuration file on disk, or a
packet as it traverses the network

Modifying data or codeIntegrityTampering

“I didn’t send it!”Claiming to have not
performed an action

Non-repudiationRepudiation

Reading key material (cryptographic) from an
app

Exposing information to
someone not authorized
to see it

ConfidentialityInformation
Disclosure

Crashing the web site, sending a packet and
absorbing seconds of CPU time, or routing
packets into a black hole

Deny or degrade service
to users

AvailabilityDenial of Service

Allowing a remote internet user to run
commands is the classic example, but running
kernel code from lower trust levels is also EoP

Gain capabilities without
proper authorization

AuthorizationElevation of
Privilege

Mitigations
Mitigation is the point of threat modeling
 Designed and performed according to priorities and impact
 Application of standard solutions to known threats

Goals of mitigation
 Address or alleviate a threat
 Protect customers and assets
 Design secure software
 Pass the goals to requirements list and track their fulfilment

Ways to address threats
 Redesign to eliminate

• Remove a functionality to avoid the threat and risk

 Apply standard mitigations
 Invent new mitigations (custom)

• Hard and risky

 Accept vulnerability in design (for low-risk situations)

APM @ FEUP 12

Mitigation Common Technologies

APM @ FEUP 13

* Fuzzing/fault injection is not a mitigation, but a testing technique

Some Standard Mitigations

APM @ FEUP 14

Some Concrete implementationsExample MitigationsTechnologyCategory

• Authentication based on key exchange
• Decide on single-factor, two-factor, or multi-factor

authentication
• Offload authentication to another provider
• Restrict authentication to certain IP ranges or locations

 Basic & Digest authentication (principals)
 Live authentication (principals)
 Cookie authentication (principals)
 Kerberos authentication (principals)
 PKI systems such as SSL/TLS and certificates
 IPSec
 Digitally signed packets
 Digital signatures (code/data)
 Message authentication codes (code/data)
 Hashes (code/data)

AuthenticationSpoofing

• Data protected from tampering with cryptographic
integrity mechanisms

• Only enumerated authorized users may modify data

 Integrity Controls
 ACLs
 Digital signatures
 Message Authentication Codes

IntegrityTampering

• Maintain logs
• Digital signature

 Strong Authentication
 Secure logging and auditing
 Digital Signatures
 Secure time stamps
 Trusted third parties

Non-repudiationRepudiation

• Stored data will only be available to authorized users
• Existence of data is exposed only to authorized users
• Content and existence of communication between two

users will only be exposed to these authorized users

 Encryption
 ACLs

ConfidentialityInformation
Disclosure

• Rate limiting or throttling access to a service
• Real-time monitoring of log files and other resources to

note sudden changes

 ACLs
 Filtering
 Quotas
 Authorization
 High availability designs

AvailabilityDenial of
Service

• System has a central authorization engine
• Authorization controls stored and controlled using ACLs
• System limits who can write data to higher integrity level
• System uses roles/accounts or permissions to manage

access

 ACLs
 Group or role membership
 Privilege ownership
 Permissions
 Input validation

AuthorizationElevation of
Privilege

Threat Modeling Tools
Help and automate some of threat modeling process
 IriusRisk – commercial tool with a threat library built from several

databases (CAPEC, CWE, OWASP, WASC Threat Classification). It has a
free community edition

 SD Elements – commercial. Full cycle security management solution
including Threat Modeling (from Security Compass company)

 ThreatModeler – another commercial offer
 Microsoft Threat Modeling Tool – free, from Adam Shostack and Ms SDL

team. Uses STRIDE, DREAD and a library of templates (with some
Windows specifities)

 OWASP Threat Dragon – free, web and desktop tool, suggesting threats
and mitigations

 CAIRIS – open source, is a platform for specifying and modelling secure
and usable systems (https://cairis.org)

 Pytm – code-based Threat Modeler - based on a python definition, pytm
can generate, a Data Flow Diagram (DFD), a Sequence Diagram and
threats to your system. Is an incubating project in OWASP
(https://owasp.org/www-project-pytm). It’s free.

APM @ FEUP 15

Cryptography
 Derives from Greek words kryptos and graphein
 Kryptos – hidden secret
 Graphein – description

A definition
 Is the practice and study of techniques for secure access,

communications, and storage, in the presence of adversaries
• Protocols and processes to prevent reading private messages
• Assurance of data confidentiality
• Also, intervention in data integrity (not modified), data authentication (not

forged), and non-repudiation (known author or recipient)

Modern cryptography
 Based on mathematical theory
 Assumes computational hardness, using algorithms hard to break by

adversaries
 Adversaries can be an eavesdropper, a man-in-the-middle, or someone

accessing data/functionalities without authorization

APM @ FEUP 16

Cryptography libraries
Many cryptography algorithms are already implemented
 Available in many general development frameworks (Java, .NET, ...)

 Many others have wrappers to other open-source libraries
• PHP, Ruby, Python, ..., have a wrapper on openSSL

OpenSSL
 Has an implementation of the SSL/TLS protocol

 A very thorough cryptography functions’ set (in a library) written in C

 A command line interface to most of those functions

Other
 Bouncy Castle – very comprehensive, for Java and C#

 Crypto++ – written in C++

 Libgcrypt – in C, by the GnuPG community

 CryptoComply – commercial (Java, C), very complete

APM @ FEUP 17

Cryptographic Recommendations
Several official organizations produce documents

recommending the cryptography algorithms to use and their
parameterization
 NIST is one of them, for the USA federal information systems

 They use the notion of cryptographic security strength
• Estimate of the number of operations needed by the best-known algorithm to

break the cryptography in the considered concrete process
• It is measured in bits; s bits represent a number of operations of 2s

• NIST considers currently only five levels: 80, 112, 128, 192, 256 bits
• 80 bits are currently disallowed, and legacy systems must be immediately replaced
• 112, 128, and 192 are the current levels for low, medium, and high-security systems

• Until the limit of 2030
• After 2030 all those systems should have transitioned to 128, 192, and 256 bits, respectively
• The transitioning should be considered during the previous 10 years time-frame, so the current

one started in 2020
• All these dates can change, if advances in prime factoring, general discrete-logarithm, elliptic

curve discrete-logarithm and other algorithms used in cryptographic implementations and
attacks are observed

• Advances in quantum-computing can also anticipate disallowances for DSA, DH, MQV, and RSA

APM @ FEUP 18

Cryptographic operations and strength
 Fundamental cryptographic operations
 Encryption / Decryption (confidentiality)

 Message Authentication Code (integrity)

 Cryptographic Hash Functions
• Preimage resistant
• Weak collision resistant (brute-force: 2length)
• Collision resistant (brute-force: 2length/2)

 Secret agreement (DH)

 Digital signatures (integrity / non-repudiation)

 Cryptographic random generation

APM @ FEUP 19

Brute-force
security
(symmetric
encryption)

Strength time-frame and hash strength

APM @ FEUP 20

General security strength current time-frame

Security strengths for hash functions

Hash functions are used as
components of many other
cryptographic algorithms.
Recent attacks on SHA-1
raised the assumption that
its strength is far less than
the one stated, so it should
not be used anymore.

Symmetric and asymmetric strengths

APM @ FEUP 21

TDEA - Triple Data Encryption Algorithm
(tripleDES) 3TDEA will be disallowed after
2023
FFC – finite field cryptography
IFC – Integer factorization cryptography
ECC – Elliptic curve cryptography
MQV – Menezes-Qu-Vanstone (key

establishment)
L, N – sizes of public and private keys for

the algorithms that use FFC
k – size of the keys’ modulus for RFC
f – range of key size for ECC (the size of the

order of the basepoint G)

Recommended lengths for keys in symmetric and asymmetric cryptography,
corresponding to a given strength

*IFC and ECC strengths are expected to be severely affected with the generalization of
quantum-computing cryptography.
Post-quantum algorithms are already being evaluated for adoption soon. NIST launched a
request for standardization in 2017, and the round 3 is now completed with several promising
candidates for public key encryption, key establishment, and digital signatures, that should be
quantum resistant.

