
Transport Layer Security

Overview of TLS

• Transport Layer Security (TLS) is a protocol that provides a secure
channel between two communicating applications. The secure
channel has 3 properties:
– Confidentiality: Nobody other than the two ends of the channel can see the

actual content of the data transmitted.

– Integrity: Channel can detect any changes made to the data during transmission

– Authentication: At least one end of the channel needs to be authenticated, so
the other end knows who it is talking to.

TLS Layer

• TLS sits between the Transport and
Application layer

– Unprotected data is given to TLS by
Application layer

– TLS handles encryption, decryption
and integrity checks

– TLS gives protected data to Transport
layer

TLS Handshake

•Before a client and server can communicate securely, several things
need to be set up first:
• Encryption algorithm and key

• MAC algorithm

• Algorithm for key exchange

• These cryptographic parameters need to be agreed upon by the client
and server

• This is the primary purpose of the handshake protocol

TLS Handshake Protocol

Network Traffics During TLS Handshake

Since TLS runs top of TCP, a TCP connection needs to be established
before the handshake protocol. This is how the packet exchange looks
between a client and server during a TLS handshake protocol captured
using Wireshark:

Certificate Verification

• The client first does a validation check of the certificate

– Check expiration date, signature validity, etc.

– Hostname and certificate’s common name match

• The client needs to have the singing CA’s public-key certificate.

Key Generation and Exchange

• Although public-key algorithms can be used to encrypt data, it is
much more expensive than secret-key algorithms.

– TLS uses PKI for key exchange.

– After that, server and client switch to secret-key encryption algorithm

• The entire key generation consists of three steps:

– Step 1: Generating pre-master secret

– Step 2: Generating master secret

– Step 3: Generating session keys

Key Generation and Exchange

These keys are used to protect an SSL session

TLS Data Transmission

• Once the handshake protocol is finished, client and server can start
exchanging data.

• Data is transferred using records.

• Each record contains a header and a payload

Sending Data with the TLS Record Protocol

Receiving Data with the TLS Record Protocol

TLS Client Program

TLS Programming : Overall Picture

TLS Client Program: TLS Initialization

• TLS protocol is a stateful protocol

• Create a context data structure

• Create a SSL structure to hold state information

SSL Context:
holding SSL

configuration

Holding
SSL states

TLS Client Program: TLS Initialization (cont’d)

Should verify
server’s certificate

Folder containing
trusted CA’
certificates, such as
root CA’s
certificates.

Check whether the
certificate’s subject
field matches with
hostname.

TLS Client Program: Set Up a TCP Connection

• TLS is primarily
built on top of
TCP.

• This part is
standard.

TLS Client Program: Initiate TLS Handshake

Establish the SSL
session on top of
an established
TCP connection

Initiate the TLS Handshake protocol

TLS Client Program: Send/Receive Data

Send data

Send data

• We construct a simple HTTP GET request, and print out the reply
from the web server.

TLS Client Program: Set Up Certificate Folder

• We need to gather some trusted CA certificates and store them in
the “./cert” folder:

• Let’s see what certificates are need for verifying google.com’s
certificate:

We need to have this
certificate, or we will
not be able to verify
Google’s certificate

We can export
Equifax’s certificate
from a browser, and
save it in ./cert.

TLS Client Program: Set Up Certificate Folder

• When TLS tries to verify a
certificate, it generates a
hash from the issuer’s
identity information.

• The hash value is used as
part of the filename to find
the issuer’s certificate.

Generate the hash using the
subject field of the certificate

TLS Client Program: Testing

• If everything is set up correctly, we should be able to see an HTML
page from the web server.

• However, if we did not setup the certificates properly, we are likely to
see this error:

• Many reason can trigger this error such as an expired certificate,
corrupted certificate etc.

Use Our Client Program to Conduct an
MITM Experiment

Experiment: Verifying Server’s Hostname

We design an experiment to show how important it is to verify
server’s hostname. We slightly modify our client program, so we can
print out more information during runtime.

We add a callback function here.
It will be triggered every time a
certificate is verified.

Experiment Callback Function

Print out the
verification result

Get and print out
the certificate’s
subject information

• We simulate a DNS Cache poisoning attack. So, every time users
want to visit www.facebook.com, they will go to www.example.org

• Instead of launching a real DNS attack, we manually add an entry to
the /etc/hosts file:

• First we try to visit Facebook using our modified client program. But,
we comment out the lines that conduct hostname check.

Experiment: Man-In-The-Middle Attack

www.example.org’s IP address

Due to the “attack”, we will actually
visit www.example.org.

Experiment: Man-In-The-Middle Attack

Running result

• All certificate
verifications are
successful.

• MITM attack is
successful.

Running a Real Client (Browser)

Hostname
match
failed

Verifying Server’s Hostname

• Let us add the hostname check back to our own code

Now we can
detect the
mismatch

We should abort the program, instead of continuing with the SSL connection.

TLS Server Program

Create a simple HTTPS server

TLS Server Program: Setup

Server’s certificate

Server’s private key

Will not verify the
client’s certificate

TLS Server Program: TCP Setup

This program
creates a TCP
socket, binds it to
a TCP port (4433)
and marks the
socket as a
passive socket.
This is quite
standard.

TLS Server: Handshake & Data Communication

Conduct TLS
handshake

with the client

We can now
use this

established SSL
session to

conduct data
communication

TLS Server Program: Data Transmission

• Logic for sending/receiving data is the same as the client program.

• We simply send an HTTP reply message back to the client.

Summary

• TLS Protocol

• Write a simple TLS client program

• Use the client program to understand how MITM attacks are
defeated

• Write a simple TLS server program

	Slide 1: Transport Layer Security
	Slide 2: Overview of TLS
	Slide 3: TLS Layer
	Slide 4: TLS Handshake
	Slide 5: TLS Handshake Protocol
	Slide 6: Network Traffics During TLS Handshake
	Slide 7: Certificate Verification
	Slide 8: Key Generation and Exchange
	Slide 9: Key Generation and Exchange
	Slide 10: TLS Data Transmission
	Slide 11: Sending Data with the TLS Record Protocol
	Slide 12: Receiving Data with the TLS Record Protocol
	Slide 13: TLS Client Program
	Slide 14: TLS Programming : Overall Picture
	Slide 15: TLS Client Program: TLS Initialization
	Slide 16: TLS Client Program: TLS Initialization (cont’d)
	Slide 17: TLS Client Program: Set Up a TCP Connection
	Slide 18: TLS Client Program: Initiate TLS Handshake
	Slide 19: TLS Client Program: Send/Receive Data
	Slide 20: TLS Client Program: Set Up Certificate Folder
	Slide 21: TLS Client Program: Set Up Certificate Folder
	Slide 22: TLS Client Program: Testing
	Slide 23: Use Our Client Program to Conduct an MITM Experiment
	Slide 24: Experiment: Verifying Server’s Hostname
	Slide 25: Experiment Callback Function
	Slide 26: Experiment: Man-In-The-Middle Attack
	Slide 27: Experiment: Man-In-The-Middle Attack
	Slide 28: Running a Real Client (Browser)
	Slide 29: Verifying Server’s Hostname
	Slide 30: TLS Server Program Create a simple HTTPS server
	Slide 31: TLS Server Program: Setup
	Slide 32: TLS Server Program: TCP Setup
	Slide 33: TLS Server: Handshake & Data Communication
	Slide 34: TLS Server Program: Data Transmission
	Slide 35: Summary

