
Graph Neural Networks (GNN)

(Material based on book Hands-on Graph Neural Networks using Python, by Maxime Labonne

and on GNNs guide

and on A Practical Tutorial on Graph Neural Networks, ACM survey paper)

(Source: http://cse.msu.edu/ mayao4/tutorials/aaai2020/)

Other useful link: A Gentle Intro to GNNs

https://books.google.pt/books?id=P063EAAAQBAJ&pg=PA1&source=gbs_toc_r&cad=2#v=onepage&q&f=false
https://www.v7labs.com/blog/graph-neural-networks-guide)
https://dl.acm.org/doi/pdf/10.1145/3503043
http://cse.msu.edu/~mayao4/tutorials/aaai2020/
https://distill.pub/2021/gnn-intro/


Data as Graphs

Data as Graphs → Implicit representation

Example 1 Example 2

(Source: http://cse.msu.edu/ mayao4/tutorials/aaai2020/)

http://cse.msu.edu/~mayao4/tutorials/aaai2020/


Data as Graphs

Tabular format does not represent relations



Data as Graphs

Challenges in analyzing a graph:

▶ Graph size is dynamic

▶ Each node can have a variable number of edges

▶ Standard methods used for images and texts are not suitable
for graphs

▶ Adjacency matrix representation can be very inefficient

▶ There can be multiple adjency matrices to represent the same
graph

▶ Standard convolution applied to images does not work
(adaptations have been tried)



Graph Neural Networks

▶ Proposed to handle graph prediction problems efficiently
▶ GNN: Graph-in, Graph-Out network

▶ It takes the input graph comprising embeddings for edges,
nodes and context

▶ Generates the output graph transformed and updated
embeddings

▶ Used for graph-level, node-level and edge-level prediction tasks

▶ GNN and GCN (Graph Convolutional Network) are used
interchangeably



Graph Neural Networks: potential tasks

▶ Link prediction

▶ Node classification

▶ Community detection

▶ Ranking

▶ etc...



Graph Representation

▶ adjacency matrix

▶ edge list

▶ adjacency list



Graph Neural Network Architectures

▶ Mainly three methods
▶ Spectral: uses Discrete Fourier Transform (DFT) to transform

the graph. Perform graph convolution in the spectral domain.
→ GCN, Chebyshev GCN, Graph Attention Networks (GAT)

▶ Spatial: applied directly on the neighborhood of each node in
the graph (message passing or neighborhood aggregation).
→ GraphSAGE (Graph Sample and Aggregation), Graph
Isomorphism Network (GIN)

▶ Sampling: to handle the scalability issues, use only a subset of
nodes instead of all.
→ GraphSAGE, DeepWalk



Spectral Methods

Source: Intuition behind Laplacian matrix

https://shorturl.at/xJY06


Spectral

▶ Uses DFT on the adjacency matrix to extract structural
properties and patterns within the graph
▶ Graph Spectra
▶ Frequency Components
▶ Graph Embeddings
▶ Graph Compression
▶ Graph Filtering



Graph Spectra

Spectral properties that encode information about the graph’s
connectivity, community structure, and other structural
characteristics. Eigenvectors represent the graph frequencies and
eigenvalues, the most common structures or motifs



Frequency components

Similar to signals, graphs can exhibit certain frequency components
that correspond to patterns of connectivity or motifs within the
graph. The DFT can identify these frequency components by
decomposing the graph into its constituent sinusoidal components.



Graph Embeddings

By transforming the graph’s adjacency matrix using the DFT, it’s
possible to obtain embeddings of the graph vertices in a
lower-dimensional space. These embeddings capture structural
information about the graph and can be used for tasks such as
graph classification, clustering, or visualization.



Graph Compression

The DFT can be used for graph compression by retaining only the
most significant frequency components while discarding the
higher-frequency noise. This can lead to more compact
representations of large graphs while preserving important
structural information.



Graph Filtering

Just as in signal processing, the DFT can be used for filtering
operations on graphs. By selectively removing or attenuating
certain frequency components, it’s possible to denoise the graph or
highlight specific structural patterns of interest.



Spectral Networks

▶ SCNN (Spectral-based Convolutional Neural Networks)
▶ learns convolutional filters for graph prediction tasks
▶ advantage: kernel is learnable
▶ disadvantages:

▶ computationally inefficient for large graphs because of multiple
matrices multiplications

▶ number of parameters in the kernel depends on the number of
nodes in the graph

▶ filter is applied to the whole graph, difficult to obtain local info



Spectral Networks
▶ GCN (Graph Convolutional Neural Networks)

▶ simple, scalable, more computationally efficient
▶ simple arch: conv layer, linear layer, non-linear activation layer
▶ disadvantages: do not support edge features (message passing

between nodes)

Note: can also be spatial-based



Spectral Methods Disadvantages

▶ not suitable for undirected graphs

▶ graph structure can not be updated during training

▶ computationally more intensive than spatial methods



Spatial Methods

▶ Spatial methods follow a standard approach of graph
convolution acting directly over the graphs nodes and edges.



Spatial Methods: Message Passing (MPNN)

▶ First introduced by Gilmer et al. (first publication with an
application in quantum chemistry, ICML 2017)

▶ Used to propagate information between nodes in the graph
(for example, neighborhood or individual node features)

▶ Goal: learn a graph representation vector via a neighborhood
aggregation scheme of node states and edge states

https://link.springer.com/chapter/10.1007/978-3-030-40245-7_10


Spatial Methods: Message Passing (MPNN) abstract
scheme



Message Passing (MPNN) readout functions

▶ Sum Readout: The simplest form of readout function is to
compute the sum of all node representations. Mathematically,
the graph-level representation hG can be computed as:

hG =
N∑
i=1

hTi

Where N is the number of nodes in the graph, and hTi
represents the final representation of node i after T message
passing iterations.



Message Passing (MPNN) readout (R) functions

▶ Mean Readout: mean (average) of all node representations.
Mathematically, the graph-level representation hG can be
computed as:

hG =
1

N

N∑
i=1

hTi

Where N is the number of nodes in the graph, and hTi
represents the final representation of node i after T message
passing iterations.



Message Passing (MPNN) readout functions

▶ Pooling Readout: pooling operations such as max pooling or
attention-based pooling. In max pooling, the graph-level
representation is computed by taking the maximum value
across all dimensions of the node representations.
Attention-based pooling uses learned attention weights to
dynamically weight the contributions of different nodes to the
graph-level representation.

▶ Graph-Level MLP: Instead of using a predefined readout
function, can also use a graph-level multi-layer perceptron
(MLP) to learn a more complex function that maps the node
representations to the graph-level representation. This allows
the model to capture more intricate relationships and patterns
in the graph.



Spatial Methods: Graph Attention Networks (GAT)

▶ GAT introduces the concept of attention mechanism in GNs

▶ In typical algorithms, the same convolutional kernel
parameters are applied over all nodes of the graph

▶ GAT allows for different convolutional parameters → can help
adjusting the degree of association between nodes and
determining the corresponding importance of nodes



Spatial Methods: Graph Attention Networks (GAT)

▶ Attention coefficients are calculated by passing node or edge
features into an attention function

▶ Softmax is applied over the obtained value to give the final
weights

▶ GAT allows for different convolutional parameters → can help
adjusting the degree of association between nodes and
determining the corresponding importance of nodes



Spatial Methods: Graph Attention Networks (GAT)

Attention function:

aij = attention(hi , hj) =
exp(aij)∑

k∈Ni
exp(aik)

Update rule (aggegation process):

h⃗′i = σ(
1

K

K∑
k=1

∑
j∈Ni

αk
ijW

k h⃗j)



MPNN x GAT

Message Passing Neural Networks (MPNNs)

▶ Node representations are typically updated through an
iterative message passing process.

▶ At each iteration, each node aggregates information from its
neighboring nodes to compute a message, which is then used
to update its representation.

▶ The update function in MPNNs combines the node’s current
representation with the aggregated messages from its
neighbors.

▶ The update process is typically performed for a fixed number
of iterations, allowing nodes to integrate information from
their local neighborhood and capture both local and global
structural information.



MPNN x GAT
Graph Attention Networks (GATs)

▶ Attention mechanisms are used to update node
representations in a non-linear and adaptive manner.

▶ Instead of aggregating information from all neighboring nodes
equally, GATs compute attention coefficients that determine
the importance of each neighbor’s contribution to the node’s
representation.

▶ The attention coefficients are computed based on learnable
parameters and the similarity between the node’s features and
its neighbors’ features.

▶ The updated representation of each node is a weighted sum of
the representations of its neighbors, where the weights are
determined by the attention coefficients.

▶ The attention mechanism allows GATs to dynamically focus
on different parts of the graph and adaptively aggregate
information from neighboring nodes based on the task
requirements and the structure of the graph.



MPNN x GAT

In summary, while both MPNNs and GATs update node
representations through information aggregation, MPNNs use a
fixed aggregation scheme based on message passing iterations,
whereas GATs employ attention mechanisms to compute adaptive
and context-aware updates based on the relationships between
nodes.



Sampling methods

▶ As graphs get larger, aggregating features from all
neighboring nodes would be computationally inefficient.

▶ Sampling methods downsize the graphs allowing for a more
efficient analysis and modeling



Sampling methods: GraphSAGE

▶ Uniform sampling on nodes would be computationally
inefficient.

▶ Extends the neighborhood depth k on each layer

▶ Learns feature information from k nodes away with every
additional layer



Sampling methods: DeepWalk

▶ Main goal: to produce high-quality feature representations of
nodes in an unsupervised way

▶ Heavily inspired by Word2Vec in NLP

▶ Use random walks to generate meaningful sequences of nodes
that act like sentences



Sampling methods: DeepWalk
▶ Use a skip-gram model commonly used to learn word

embeddings to learn node embeddings

▶ skip-gram attempts to maximize the similarity of the nodes
that occur in the same random walk

▶ A set of random vectors are generated for each node using the
skip-gram method

▶ Gradient descent is applied to these vectors to update the
node embeddings and maximize the probability of the
neighboring nodes given a node by using a softmax function



Sampling methods: DeepWalk (Perozzi et al. )

Works in 2 stages:
▶ Stage 1: Random Walks

1. Repeat k times:

1.1 A node is selected randomly
1.2 Of all its neighboring nodes, another one is selected randomly
1.3 Repeat till sequence length l is reached

▶ Stage 2: Skip-gram model

https://dl.acm.org/doi/10.1145/2623330.2623732


To learn more

▶ Graph Neural Networks - tutorials and resources

▶ Colab notebooks and tutorials using pytorch geometric

https://forums.fast.ai/t/graph-neural-networks-tutorials-and-resources/110234
https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html

