
Large Scale Data on GPGPUs

General Purpose Graphical Processing Units (GPGPUs) focus on
data-parallel computations rather than task-parallelism
Scalable array of multithreaded Streaming Multiprocessors (SMs)

May 14, 2024 1 / 30



Large Scale Data on GPGPUs

Types of GPU
Integrated: power is shared between GPU and CPU. Graphics card is
built directly into the computer’s processor.
I Best for web browsing, social media, resource-light work such as

spreadsheets, editing, light-resource demanding games etc.
I Example: AMD Ryzen

Dedicated: completely separated processor from the main CPU, has
its main dedicated memory and a cooling system.
I When buying a dedicated GPU, CPU processor needs to be a good

match as well as the power supply. → Baseline processor: 8th gen Intel
Core i7.

I Main uses: AAA games and neural network-based machine learning
models.

I Example: Nvidia GTX, RTX, Quadro etc.

May 14, 2024 2 / 30



GPU Suppliers

https://blog.siggraph.org/2023/01/2022-was-the-rise-of-gpu-suppliers.html/

May 14, 2024 3 / 30

https://blog.siggraph.org/2023/01/2022-was-the-rise-of-gpu-suppliers.html/


GPU Architecture

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9623445

May 14, 2024 4 / 30

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9623445


GPU Architecture

https://miro.medium.com/max/6058/1*Uyx0bONUqvbZLu8z1cYQ1g.png

May 14, 2024 5 / 30

https://miro.medium.com/max/6058/1*Uyx0bONUqvbZLu8z1cYQ1g.png


GPU Architecture: memory bandwidth

May 14, 2024 6 / 30



GPU Architecture

May 14, 2024 7 / 30



GPU Architecture

May 14, 2024 8 / 30



Grids, blocks and threads

Usually, a grid is organized as a 2D array of blocks
A block is organized as a 3D array of threads
Both grids and blocks use the dim3 type with three unsigned integer
fields
Unused fields are initialized to 1 and ignored.

May 14, 2024 9 / 30



GPU Execution

May 14, 2024 10 / 30



GPU Architecture

May 14, 2024 11 / 30



Heterogeneous programming

May 14, 2024 12 / 30



Data Partitioning

(from http://www.hds.bme.hu/˜fhegedus/C++/Professional%20CUDA%20C%20Programming.pdf)

May 14, 2024 13 / 30

http://www.hds.bme.hu/~fhegedus/C++/Professional%20CUDA%20C%20Programming.pdf


Auto Scaling

(Tesla V100 uses 80 SMs!)

(from https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model)

May 14, 2024 14 / 30

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#programming-model


Python alternatives for GPUs

Numpy: CuPy or Jax
Pandas: RAPIDS cuDF
scikit-learn: RAPIDS cuML
DNN: cuDNN

May 14, 2024 15 / 30

https://cupy.chainer.org/
https://github.com/google/jax
https://docs.rapids.ai/api/cudf/nightly/
https://docs.rapids.ai/api/cuml/nightly/
https://developer.nvidia.com/cudnn


CPU x GPU

pybench
Performance comparison

May 14, 2024 16 / 30

https://github.com/pentschev/pybench
https://blog.dask.org/2019/06/27/single-gpu-cupy-benchmarks


CUDA: Computer Unified Device Architecture

C/C + + extension to prepare code to run in GPGPUs
Compiler: nvcc
CUDA program: kernel (functions that will run in the GPU)
Defining a kernel in CUDA:

May 14, 2024 17 / 30



CUDA: Computer Unified Device Architecture

A kernel is defined using the global declaration specifier and the
number of threads that will execute that kernel
Each thread that executes the kernel is given a unique thread ID
thread ID accessed in the kernel function via built-in variables

May 14, 2024 18 / 30



CUDA: Computer Unified Device Architecture

CUDA built-in variables:
I gridDim: dimension of grid (type dim3)
I blockDim: dimension of block (type dim3)
I blockIdx: block index within a grid (type uint3)
I threadIdx: thread index within a block (type uint3)
I warpSize: warp size in threads (type int, usually 32)

May 14, 2024 19 / 30



CUDA: Computer Unified Device Architecture

threadIdx is a 3-component vector (vector, matrix or volume)
→ for a 1D block, thread index and thread ID are the same
→ for a 2D block of size (Dx,Dy), thread ID of a thread of index (x,y)
is (x+yDx)
→ for a 3D block of size (Dx,Dy,Dz), thread ID of a thread of index
(x,y,z) is (x +yDx + zDxDy)
each block can have at most 1024 threads (this number depends on
the GPU model. Some new GPU models can take up to 2048 threads
in a block)
threads in the same thread block run on the same stream processor
(SM) and communicate via shared memory, barrier synchronization or
other synchronization primitives
all blocks in the same grid contain the same number of threads

May 14, 2024 20 / 30



Alternatives for python

PyCUDA or PyOpenCL
(slides from https:

//www.slideshare.net/GIUSEPPEDIBERNARDO/pycon9-dibernado-94735367)

Numba
(slides from
https://devblogs.nvidia.com/numba-python-cuda-acceleration/)

May 14, 2024 21 / 30

https://www.slideshare.net/GIUSEPPEDIBERNARDO/pycon9-dibernado-94735367
https://www.slideshare.net/GIUSEPPEDIBERNARDO/pycon9-dibernado-94735367
https://devblogs.nvidia.com/numba-python-cuda-acceleration/


PyCUDA: workflow

May 14, 2024 22 / 30



PyCUDA: hello world! (1)

May 14, 2024 23 / 30



PyCUDA: hello world! (2)

May 14, 2024 24 / 30



PyCUDA: gpuarrays

May 14, 2024 25 / 30



PyCUDA: device properties

May 14, 2024 26 / 30



Numba

Python compiler from Anaconda
Compile Python code for execution on CUDA-capable GPUs or
multicore CPUs
Numba team implemented pyculib that provides a Python interface to
CUDA libraries:
I cuBLAS (dense linear algebra)
I cuFFT (Fast Fourier Transform)
I cuRAND (random number generation)

May 14, 2024 27 / 30



Numba example (1)

May 14, 2024 28 / 30



Numba example (2)

May 14, 2024 29 / 30



Numba example: Mandelbrot

https://github.com/harrism/numba_examples/blob/master/
mandelbrot_numba.ipynb

May 14, 2024 30 / 30

https://github.com/harrism/numba_examples/blob/master/mandelbrot_numba.ipynb
https://github.com/harrism/numba_examples/blob/master/mandelbrot_numba.ipynb

	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs
	Large Scale Data on GPGPUs

